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Introduction to Device Drivers 

1.1 Introduction 

This chapter, along with the' 'Example Driver Code" chapter, explains 
how to write and install device drivers in a XENIX environment. It 
describes the role of device drivers in a XENIX-based system, and 
discusses other special considerations involved in writing a device driver. 
It describes the XENIX model of devices in terms of files, tasks to be per­
formed, and interrupts to be processed. 

These chapters are meant as a reference for the experienced XENIX C 
Language developer who wishes to use previously unsupported hardware. 
Writing a device driver is a complex and difficult task, and should not be 
undertaken lightly. You must have a technical reference both for the dev­
ice you wish to support and for the computer that will be using the driver 
and device. 

1.1.1 What is a XENIX Device Driver? 

For each peripheral device (such as a terminal) in an sea XENIX system, 
there must be a device driver to provide the software interface between 
the device and the system. An sea XENIX device driver is a set of rou­
tines that communicates with a hardware device, and provides a uniform 
interface to the seQ XENIX kernel. This interface lets the kernel inter­
pret your I/O requests as operating-system tasks to be performed. 

Specifically, the XENIX device driver manages the flow of data and con­
trol between the user program and the peripheral devices. The path of an 
I/O request is shown in the following diagram, starting with a system call 
from a user program, and ending at the device driver: 

I User Program 
User Space 

Kernel Space 

Peripheral 
L---~~--'----)o)----'---)~ Devices 

Kernel Device 
Drivers 
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1.1.2 Device Models Supported by XENIX 

The XENIX operating system supports two device models: character dev­
ices and block devices. This chapter describes how to write device 
drivers for both device models. 

In general, any device with a randomly addressable set of fixed-size 
records is a block device; any other type of device is a character device. 
For example, disk drives are block devices, while terminals and line 
printers are character devices. The XENIX operating system presents a 
uniform interface to user programs by coding device dependent issues 
inside the device drivers. User processes can access devices just as they 
would a regular file. The kernel and the associated device driver perform 
the necessary transformations to change a user request, such as read(S), 
to an i/o request for the device. Thus, character and block devices look 
alike to the user program. 

Character-device drivers communicate directly with the user program. 
The process begins when a user program requests a data transfer of some 
number of bytes between a section of its memory and a specific device. 
The operating system transfers control to the appropriate device driver. 
The user program supplies the parameters for the request to the device 
driver, which in tum performs the work. Thus, the operating system has 
minimal involvement in the request; the data transfer is a private transac­
tion between the user process and the device driver. 

Block-device drivers require more involvement from the operating sys­
tem to perform their tasks. Block devices transfer data in fixed-size 
blocks, and are usually capable of random access. (The device does not 
need to be capable of random access; magnetic tapes are often read or 
written using block I/O.) The two factors that distinguish block I/O from 
character I/O are: 

• The size of data-transfer requests from the kernel to the device is 
always a multiple of the system-block size (called BSIZE), regard­
less of the size of the user process' original request. A single 
user-process request can generate many system requests to the 
driver. BSIZE is 1024 bytes in the 286 and 386 versions ofXENIX. 
The device's physical block size may be smaller than BSIZE, in 
which case the device driver initiates multiple physical transfers to 
transfer a single logical block. 

• Transfers are never done directly into a user process' memory area. 
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these buffers to perlorm services such as blocking and unblocking 
of data and disk caching. 

1.1.3 Using Example Driver Code 

The "Example Driver Code" chapter discusses sample device-driver 
source code .for a line printer, a terminal, a hard-disk drive, and a 
memory-mapped screen. These source-code samples are intended as pro­
totypes from which the experienced programmer can begin writing a dev­
ice driver for a particular device. 

1.1.4 About Special-Device Files 

To a XENIX user, a device can be treated like a file. A file consists of an 
ordered sequence of bytes. Files that contain data are called regular files, 
and files that represent devices are called special device files. Each file 
has at least one name; the names of special device files are, by conven­
tion, placed in the directory named /dev. 

Each special device file has a device number that uniquely identifies the 
device. The device number consists of two parts, the major number and 
the minor number. The major number tells the kernel which device driver 
will handle requests for this special file. The minor number can be used 
by the driver to provide more information about a particular unit of the 
devices that it controls (such as the unit number). For example, all the 
ports on an 8 port serial card have the same major device number, but 
they would have 8 separate minor device numbers. 

Before the user process can request input or output, the process must first 
have opened a special device file. A special device file looks like an ordi­
nary disk file, except that it was created by the utility program, 
mknod(C), described in the XENIX User's Reference. The file appears in 
a directory and has owner and permission fields, as does any disk file, but 
it contains no file size data. Instead, it has the major and minor numbers 
associated with it. The Is -I command displays numbers like these: 
crw--w--w- 1 michaelb user 5, 6 Sep 21 07:21 /dev/ttylc 
crw--w--w- 1 zursch user 5, 7 Sep 21 09:49 /dev/ttyld 
brw------- 1 sysinfo backup 3, 2 Sep 21 05:34 /dev/hd01 
Here the IdevlttyJ c file has a major device number of 5 and a minor dev­
ice number of 6. IdevlttyJ d has a major device number of 5 and a minor 
device number of 7. The IdevlhdOJ file has a major device number of 3 
and a minor device number of 2. 
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When a user process opens the special device file, the XENIX kernel 
recognizes that it is a special device file and uses the major number to 
index a table of entry points. If the special device file designates a charac­
ter device, it uses the cdevsw table; if it designates a block device, it uses 
the bdevsw table. These two tables are defined in the /usrlsys/conf/c.c file 
that is generated by the config(ADM) program when the kernel is built. 

When a user process uses the open(S) or fopen(S) system service on a 
desired file, the XENIX kernel calls the device driver's open entry-point 
through the cdevsw or bdevsw table, supplying the minor device number 
as an argument. The minor device number usually encodes the unit 
number. However, a device driver can dedicate some of the bits in the 
minor number to indicate special options, such as "use double density" 
in the case of a floppy disk. 

These special device files should have meaningful names and should 
reside in the /dev directory. For example, /dev/tty03 would normally be 
associated with the major device number of the console device driver; its 
minor number would indicate the fourth port. Note that this is just a con­
vention; the system administrator could assign the same major/minor 
numbers to either of the files /usr/ellen/magtape or /usr/ellen/tty9J, with 
identical results. The name is for your convenience; the XENIX kernel 
keys solely on the major and minor device numbers. 

1.2 Kernel Environment 

This section briefly discusses a few functional aspects of the XENIX 
operating system: modes of operation, context switching, system-mode 
stack use, task-time processing, and interrupt-time processing. It also 
describes the services provided to device drivers by the XENIX kernel, 
and the rules that device drivers are required to obey. 

What is an Interrupt? 

An interrupt is a signal from a device that tells the kernel that an action 
has been completed or that the sending process or device requires 
immediate attention. The XENIX System V kernel depends on interrupts 
to schedule processing efficiently. 
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1.2.1 Version 7/System V Compatibility Issues 

This section describes some of the changes between Version 7 of UNIX 
and System V of XENIX that affect the device-driver interface. 

Device Numbers 

In Version 7 of UNIX, the dev parameter passed to the open, close, read, 
write, and ioctl driver routines included the major and minor device 
numbers. In System 3 and System V, only the minor device number is 
passed in the dev parameter. This means it is no longer necessary for all 
device drivers to mask out the major device number before checking the 
minor device number. 

iomove 

Some Version 7 device drivers used a routine called iomove to copy to or 
from user space. The iomove routine does not exist in System 3 and Sys­
tem 5. However, adding the following code will provide most of the same 
capability: 
#include " .. /h/param.h" 
#include " .. /h/buf.h" 
#include fl •• /h/dir.h" 
#include " .. /h/user . h" 

iomove(cp, cnt, flag) 
caddr t cp; 
register int cnt; 
int flag; 

register int dirflag; 

if (cnt == 0) 
return; /* Nothing to do! */ 

dirflag = (flag == B_WRlTE) ? U_WUD : UYUD; 

if (copyio((caddr_t) cp, u.u_base, cnt, dirflag) == -1) { 
u.u-error = EFAULT; 
return; 

u.u base += cnt; 
u.u offset += cnt; 
u.u_count -= cnt; 
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1.2.2 Modes of Operation 

When a process is executing instructions in the user program, it is said to 
be in user mode. When it is executing instructions in the XENIX kernel, it 
is said to be in system mode. When the kernel receives an interrupt from 
an external device, it switches to system mode if it was in user mode and 
passes control to the interrupt routine of the appropriate device driver. 
When the driver is done, it returns control of the process to the kernel, and 
the processing that was interrupted is resumed. The processing that took 
place as a result of the interrupt is called interrupt-time processing. All 
other processing, execution in user programs, and execution in the kernel 
resulting from system calls, is called task-time processing. 

Although all processes originate as user programs, a given process may 
run in either user or system mode. In system mode, a process executes 
XENIX kernel code and has privileged access to I/O devices and other 
services. In user mode, a process executes users' program code, and has 
no special privileges. In fact, XENIX provides a high level of protection 
for processes in user mode to prevent a program from inadvertently 
damaging the system or other programs. A process voluntarily enters sys­
tem mode when it makes a system call. If an interrupt or trap is received 
while a process is executing in user mode, the process will switch into 
system mode to handle the interrupt. Upon return from an interrupt to 
user mode, the process may lose the CPU, and the kernel may decide to 
switch control, or context (described in the following section), to a 
different process. 

1.2.3 Context Switching 

Context switching occurs when the kernel decides to transfer control of 
the CPU from the currently executing process to a different process. 

The kernel makes a context switch whenever: 

• The process' time slice expires. 

• The process makes a system call that cannot be completed 
immediately, as in the case of a read from a slow input device, 
such as a disk or a tape. When this happens, the device driver calls 
the kernel routine sleepO. 

• An interrupt is received that lets a blocked process proceed. This 
case will occur when the process has been sleeping at high priority, 
waiting for the interrupt handler to call wakeup to indicate a com­
pleted I/O request. If the priority at which the process is sleeping is 
higher than that of the currently running process, a context switch 
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will occur. 

In system mode, a context switch is always voluntary, by way of a call to 
the sleepO routine. Interrupts can still arrive while the kernel is in system 
mode (they can be locked out for short periods of time, if necessary), but 
when the interrupt-service routine returns, control passes back to the 
interrupted process. 

1.2.4 The System-Mode Stack 

Each process has a special area of memory associated with it, called the 
u-area. The u-area is not directly accessible to a user process (that is, it is 
not in the process' normal address space). It contains the information the 
kernel needs to manage the process while it is running, and contains space 
for a system-mode stack. When any process makes a system call, its regis­
ters are preserved in its u-area, and the stack pointer is moved to the 
beginning of its system-mode stack area. When the system call has com­
pleted, the registers are restored from the u-area, the stack pointer is 
restored to the process' stack, and control is returned to the process. Since 
each process in the system has its own u-area, a system running n 
processes has n user stacks and n system stacks contained in the u-area. 

The XENIX operating system (and therefore the task-time portions of the 
device drivers) uses a fixed-size, system-mode stack in the u-area. In 
XENIX, the size of this per-process stack is 1024 bytes. It is critical, then, 
that device-driver procedures not create local (stack) buffers of any 
significant size. If a device driver uses, or causes to be used, more than 
1024 bytes of stack space, the kernel panics with a stack overflow. It is 
especially important that interrupt routines use little or no stack space. 
The following declaration will cause trouble, since as soon as the routine 
is called it requires at least 1024 bytes of stack space: 

open() 
{ 

char buf [512]; 
char buf2[512]; 

Further, interrupt-service routines make use of whatever system stack was 
set up at the time of the interrupt. If the interrupt occurs while the 
currently running process is in user mode, the interrupt-service routine 
will have the entire kernel stack area for its use. However, if the interrupt 
takes place while the process is in system mode, the interrupt-service rou­
tine will be sharing the kernel stack area. For this reason, interrupt­
service routines must minimize their frame-variable declarations, keeping 
their frame requirements to as few bytes as possible. 
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1.2.5 Task-Time Processing 

The operating system manages a number of processes, each correspond­
ing to a user program. Any particular process may be running in system 
mode or user mode at any given time. When a process makes a system 
call to request kernel service, the process switches to system mode, and 
starts running kernel code. When the kernel is executing code at the 
request of a user program, it is doing task time processing. 

On a multitasking system like XENIX, the kernel is capable of tracking 
many processes at the same time. Each individual process has its own 
local variables; hence, device driver code should always be reentrant. 
This means that the driver must be capable of being invoked again before 
the previous request has been satisfied. For instances when kernel execu­
tion must be limited to a single process, see the discussion of interrupt 
support routines in this Guide. 

Each time a driver is invoked, it services only the specific system call that 
the user process requested. The active process' u-area is always mapped 
into the kernel's address space, so when kernel code is executing it has 
information about the request and process that it is serving. 

Often the kernel cannot service a request immediately. The request may 
require I/O, or the request itself could be an instruction to wait a while. 
When a process in system mode blocks, awaiting some event, the system 
scheduler schedules some other process, which may be in either user or 
system mode. This is commonly known as a "context switch." In other 
words, the system continues operations but switches from the execution 
of a sleeping process to an active one. 

I/O requests from user processes are passed by means of system calls to 
the device driver. Some parameters of the request, such as byte count and 
transfer address, are kept in the u-area. These task-time portions of the 
driver can reference and perhaps modify the u-area, since the currently 
running process' u-area is always mapped into the kernel's address space. 

1.2.6 Interrupt-Time Processing 

When a device interrupt is received, the tasks performed as a result of the 
interrupt are referred to as interrupt-time processing. When an interrupt 
arrives, any of the active processes on the system may be executing. That 
is, the system may be running in the context of any current active process. 
This process mayor may not be the process that is expecting the interrupt. 
In fact, it is highly unlikely that the currently running process will be the 
process expecting the interrupt. 
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Even if the incoming interrupt signals the completion of a user process' 
request, the interrupt-service routine can take no direct action. Typically, 
a process will be asleep, waiting for i/o, and the interrupt from the device 
indicates that the i/o request is complete or that data is ready to be 
transferred. The interrupt routine needs to transfer the data to kernel 
buffers and wakeupO the user process. Then, at task time, the data can be 
transferred to the user process. Any data or status that the interrupt­
service routine wants to return to the task-time portion of the driver (and 
hence to the requesting user program) must also be passed by means of 
static memory. 

The task-time portion of the device driver keeps the local (frame) vari­
ables in its system-mode stack, which is in the u-area. This u-area is not 
mapped into the kernel's address space at interrupt time, in this case the 
u-area there belongs to another process. The correct u-area might even be 
out on the swap disk. Thus, the interrupt-service routine must never 
attempt to store data in the u-area or in user memory; and the I/O device 
itself must not transfer directly into the user's memory area. An interrupt 
routine can make no assumptions about the u-area. 

Usually, this is not a problem. Character devices typically make use of 
small, system-supplied buffers called character lists (clists). Block dev­
ices use BSIZE buffers in the system-buffer pool. The task-time portion 
of the driver transfers the data from the buffers into user memory. It may 
be important that the transfer take place directly into user memory, since 
it is necessary to lock the user program into physical memory to prevent 
swapping. 

Typically, the task-time portion of the device driver issues a sleep call 
when it makes the initial I/O request. The interrupt-service routine must 
decide if an interrupt is valid and any action to be taken as a result of the 
interrupt. The interrupt routine must be able to decide if it needs to notify 
the task-time portion of the driver as opposed to issuing another I/O com­
mand. If the task time portion of the driver should be notified, the inter­
rupt routine puts any status information into static data and issues a 
wakeup call to the task-time portion. The interrupt-service routine then 
returns to the operating system, which in tum returns control to the inter­
rupted context. The system scheduler reschedules the running process so 
that the newly awakened process is executed. The task-time portion of 
the device driver finds that it has returned from the sleep call and that 
there are status and data bytes waiting in static-memory locations. 

Access to static variables that can be modified at interrupt time is inter­
locked with the system priority level routines. These routines raise the 
interrupt priority of the CPU so that interrupts that might cause a value to 
change are locked out until the splx routine is called. This period must be 
kept as short as possible. For a more detailed description of these 
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routines, see the section titled "Interrupt Support Routines. ' , 

Device drivers that use the standard interfaces to the kernel have a 
method for passing information between the interrupt-time portion of a 
driver and the task-time portion. Standard I/O device drivers for block 
devices note the outcome of the data transfer in the buffer headers associ­
ated with the transfer. The header for the list of transfers that the driver is 
working on is defined in lusrlsyslhliobuj. The header for the buffer associ­
ated with the current transfer is defined in lusrlsyslhlbuj.h. Standard char­
acter I/O device drivers use the per-device tty structure (defined in 
lusrlsyslhltty.h) to pass information about the I/O request. 

1.2.7 Interrupt Service Routine Rules 

An interrupt service routine operates in a more restricted environment 
than a task-time routine, since it cannot make any assumptions about the 
state of the system or about the presence of particular user processes or 
user data in system memory. The relationship between the scope of task­
time and interrupt-time routines is illustrated in the following figure: 

Task Time 

User Program 

Kernel Drivers 

Interrupt 
Time 

Driver 
Interrupt 
Routines 

The key things to remember are that the user process is mapped into 
memory, and its u-area is mapped into the kernel's address space only at 
task time. Task-time processing occurs whenever the user-program code 
is executing (user mode) or the operating system is executing and per­
forming services for the program (system mode). 

Do not assume that the u-area is mapped into memory during the execu­
tion of an interrupt routine. No interrupt routine, nor any routine that may 
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be called at interrupt time, may make any reference to user memory, the 
u-area, or nonstatic-memory locations. This means that the task-time por­
tion of the driver must not try to pass addresses of its frame variables and 
buffers to devices and interrupt-service routines. Those locations are valid 
only when that individual user process is executing. 

1.3 Parameter Passing to Device Drivers 

The task-time portion of the device driver has access to the user's u-area, 
since this is mapped into the kernel's address space. The kernel routines 
that process the user process' I/O request place information describing the 
request into the process' u-area. The parameters passed in the u-area are: 

Parameter Contains 

Specifies the address in user data to read/write 
data for transfer 

Specifies the number of bytes to transfer 

Specifies the start address within the file for 
transfer 

Indicates the direction of the transfer 

To determine the values to use for u.u segfig, see the lusrlsyslhluser.h file. 
In addition to the parameters passed m the u-area, the kernel I/O routines 
pass the minor device numbers as parameters to the driver when it is 
called. Thus, the driver has all the information it needs to perform the 
request: the target device, the size of the data transfer, the starting address 
on the device, and the address in the process' data. 

Only device drivers that do not use standard-character and block I/O 
interfaces in the kernel need to examine the parameters in the u-area. 
Kernel routines that provide these standard interfaces have converted the 
values passed in the u-area into values that the driver expects. In the case 
of the standard block I/O interface, these parameters are set in the buffer 
header that describes the data transfer. For more information on using the 
buffer header information to set up a block data transfer, see the section 
on "Device Drivers for Block Devices." 

Device drivers using the standard-character I/O interface use the c1ist­
buffering scheme and the routines that manipulate the clist to effect the 
data transfers. For more information on using c1ists and the character I/O 
interface routines, see the section on "Device Drivers for Character Dev­
ices." 
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1.4 Naming Conventions 

There are naming conventions for all driver routines called by the kernel, 
and for some driver variables. Each driver uses a unique two-to-four 
character prefix to identify its routines. For example, a hard-disk driver 
might use the prefix hd. In the following sections, the prefix used is xx. 
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2.1 Introduction to Block Devices 

Block devices are those that must be addressed in terms of large blocks of 
data, rather than individual bytes. Disks fall into this category, as do some 
magnetic-tape systems. XENIX file systems always reside on block dev­
ices. However, block devices do not have to be used in this way. 

Unlike character devices, a block-I/O-transfer request is not a private 
transaction between a driver and a user process. The XENIX kernel pro­
vides a comprehensive buffer-management scheme that is used by block­
device drivers. 

The XENIX kernel maintains a pool of buffers, and keeps track of what 
data is in them, and whether the block is dirty (has been modified and 
therefore needs to be written out to disk). When a user process issues a 
transfer request to a block device, the kernel-buffer routines check the 
buffer pool to see if the data is already in memory. If it is not, a request is 
passed to the driver to get the data. The driver only sees fixed-size 
requests (BSIZE bytes long) coming in from one source, regardless of the 
size of the process' I/O request. Large requests are broken down into 
BSIZE blocks and handled individually, since some may be in memory 
and some may not. 

When a process issues a read request, this generally translates into one or 
more disk blocks. The kernel checks to see which of these is already in 
memory, and requests that the driver get the remainder. The data from 
each buffer filled by the driver is copied into the process' memory by the 
kernel. 

In the case of a write request, the kernel copies the data from the user pro­
cess' memory into the 01 \ffer pool. If there are insufficient free buffers, the 
kernel will have the driver write some out to disk, using a selection algo­
rithm designed to reduce disk traffic. When all the data is copied out of 
user space, the kernel can reschedule the process. Note that all the data 
may not yet be out on a disk; some may be in memory buffers, marked to 
be written out at a later time. 

2.1.1 Character Interface to Block Devices 

Sometimes block-device drivers provide a character-I/O interface as well 
as one for block I/O. In this case, you can create a separate special-device 
file to access the device through the character interface. To construct a 
character-I/O interface to a block device, use the mknod(C) utility to 
create a character special device file that has the same major and minor 
number as the block special-device file for this device. The block-device 
driver must provide the xxread and xxwrite routines to implement 
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character I/O. For more information about creating this device file, see 
mknod(C) in the XENIX Reference Manual. 

When a block device is accessed through a character interface, data 
transfer takes place directly between the device and the process' memory 
space. There is no intermediate buffering in the kernel-buffer pool or the 
c1ists. The driver receives the request exactly as the process sent it, for 
whatever size was specified. There is no kernel support to break the job 
into BSIZE blocks. This type of data transfer is referred to as physical, or 
raw, I/O. It has some advantages for certain types of programs. 

Programs that need to read or write an entire device can do so more 
efficiently through the character interface, since the device can be 
accessed sequentially and large transfers can be used. There is also less 
copying of data between buffers than is used in the block interface. Thus, 
disk-backup programs, or utilities that copy entire volumes, operate 
through this interface. 

The cost of this extra efficiency is that the process has to be locked in 
memory during the transfer, since the driver has to know where to buffer 
the data. The physio routine, called by the xxread and xxwrite driver 
routines, locks the process in memory (core) for the duration of the data 
transfer. 

2.1.2 Block Device Driver Routines 

This section describes routines that comprise the interface between the 
kernel and the block-device driver. Some of the following functions are 
supplied by the seQ XENIX kernel, and some must be supplied by the 
driver writer within the device driver. 

The following group of routines must be supplied by the device driver 
writer: 

xxinitO, xxopenO, xxcloseO, xxstrategyO, xxstartO, xxintrO, xxreadO, 
xxwriteO, xxioctlO 

The second group of routines is supplied by the kernel: 

physioO, brelseO, deverrO, disksortO, getablkO, iodoneO, iowaitO 

A block device appears to the kernel as a randomly addressable set of 
records of size BSIZE, where BSIZE is a manifest constant defined in the 
sys/param.h file. The XENIX kernel inserts a layer of buffering software 
between user requests for block devices and the device driver. This 
buffering improves system performance by acting as a cache, allowing 
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read-ahead and write-behind on block devices. 

Each buffer in the cache contains an area for BSIZE bytes of data and has 
a header associated with it of type struct buf, that contains infonnation 
about the data in the buffer. When an I/O request is passed to the task­
time portion of the block-device driver, all of the infonnation needed to 
handle the data transfer request has been stored in the buffer header. This 
infonnation includes the disk address, and whether a read or a write is to 
be done. The file lusrlsyslhlbuj.h describes the fields in the buffer header. 
The fields most relevant to the device driver are: 

Field Contains 

b dev The major and minor numbers of the device 

b bcount The number of bytes to transfer 

byaddr The physical address of the buffer 

b blkno The block number on the device 

b error Set if an error occurred during the transfer 

The driver validates the transfer parameters in the buffer header, and then 
queues the buffer on a doubly linked list of pending requests. In each 
block-device driver, a header named xxtab (of type struct iobuf) points to 
this chain of requests. The lusrlsyslhliobufh file describes the fields in 
the request-queue header. The requests in the list are kept sorted using 
the disk sort routine. The device-interrupt routine takes its work from this 
list. 

When a transfer request is placed in the list, the process making the 
request sleeps until the transfer is completed. When the process is awak­
ened' the driver checks the status infonnation from the device-interrupt 
routine, and if the transfer completes successfully, returns a success code 
to the kernel. The kernel-buffer routines are responsible for correlating 
the completion of an individual buffer transfer with particular user­
process requests. 
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The interface between the kernel and the block-device driver consists of 
the routines described in the following list: 
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Syntax: xxinit 0 

Description: The xxinit routine initializes the device when XENIX 
is first booted. If present, it is called indirectly 
through the dinitsw table defined in the kernel 
configuration file lusrlsyslconJlc.c. It is also good 
practice for the xxinit routine to announce the pres­
ence of the device it is associated with. 

Syntax: xxopen( dev ,flag,id) 
int, dev, flag, id; 

Description: The xxopen routine is called each time the device is 
opened. This routine initializes the device and per­
forms any error or protection checking. 

Parameters: The value of dev is an integer that specifies the minor 
device number. 

Syntax: 

The flag argument is the oflag argument passed to the 
open system call. 

The value of id is an integer that specifies whether the 
device is a block device (1) or a character device (0). 

xxclose( dev, flag) 
int dev, flag; 

Description: The xxclose routine is called on the last close on a 
device. It is responsible for any cleanup that may be 
required, such as disabling interrupts, clearing device 
registers, and ejecting media. 

Parameters: The value of dev is an integer that specifies the minor 
device number. 
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The flag argument is the oflag argument passed to the 
close system call. 

Syntax: xxstrategy (bp) 
struct buf *bp; 

Description: The kernel calls the xxstrategy routine to queue an 
I/O request. It must make sure the request is for a 
valid block, and then insert the request into the queue. 
Usually the driver calls disksortO to insert the 
request into the queue. The disksort routine takes two 
arguments: a pointer to the head of the queue, and a 
pointer to the buffer header to be inserted. 

Parameters: The bp argument specifies a pointer to a buffer header. 

Syntax: 

Description: 

Syntax: 

Description: 

xxstart 0 

If the task-time portion of the driver detects that the 
device is idle, the xxstart routine may start it. It is 
often called by both task-time and interrupt-time parts 
of the driver. It checks whether the device is ready to 
accept another transfer request. If it is, the xxstart 
routine starts it up, usually by sending it a control 
word. 

xxintr(vec num) 
int vec _ num; 

The xxintr routine is called whenever the device 
issues an interrupt. Depending on the meaning of the 
interrupt, it may mark the current request as complete, 
start the next request, continue the current request, or 
retry a failed operation. 
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Note 

The routine examines the device-status infonnation, 
and detennines whether the request was successful. 
The block-buffer header is updated to reflect this. The 
interrupt routine checks to see if the device is idle 
and, if it is, starts it up before exiting. 

Parameters: The value of vee num is an integer that specifies the 
interrupt-vector number of the device that originated 
the interrupt. 

Often a block-device driver will provide a character-device-driver 
interface so that the device can be accessed without going through 
the structuring and buffering imposed by the kernel's block-device , 
interface. For example, a program might wish to read magnetic­
tape records of arbitrary size, or read large portions of a disk 
directly. When a block device is referenced through the character­
device interface, it is called raw I/O to emphasize the unstructured 
nature of the action. Adding the character-device interface to a 
block device requires the xxread, xxwrite and xxioctl routines. 
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Syntax: xxread(dev) 
int dev; 

Description: The xxread routine calls the physio with the 
appropriate arguments. This is the only action 
xxread perfonns. 

Parameters: The value of dev is an integer that specifies the minor 
device number. 

Syntax: xxwrite (dev) 
int dev; 

Description: The xxwrite routine calls physioO with the appropri­
ate arguments. This is the only action xxwriteO per­
fonns. 
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Parameters: The value of dev is an integer that specifies the minor 
device number. 

Syntax: xxioctl(dev, cmd, arg, mode} 
int dev, cmd, mode; 
faddr _ t arg; 

Description: The kernel calls the xxioctl routine when a user pro­
cess makes an ioctl system call for the specified dev­
ice. This routine performs hardware-dependent func­
tions such as parking the heads of a hard disk, setting 
a variable to indicate that the driver is to format the 
disk, or telling the driver to eject the media when the 
close routine is called. 

Parameters: The value of dev is an integer that specifies the minor 
device number. 

The cmd argument specifies the command passed to 
the ioctl system call. 

The arg argument specifies the argument passed to 
the ioctl system call. 

The mode argument specifies the flags set on the open 
system call for the specified device. 

2.1.3 Kernel Provided Routines 

The following routines are provided by the kernel for the device driver 
writer. 

Syntax: pbysio(strategy, bp, dev, flag} 
int (*strat) 0; 
struct buf *bp; 
int dev, flag; 

Description: The pbysio routine provides the raw (direct) I/O inter­
face for block-device drivers. It validates the request, 
builds a buffer header, locks the process in core, and 
calls the strategy routine to queue the request. 
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Note 

Note If the data transfer crosses a 64K segment boundary, 
pbysio may break the request into 3 pieces. On a 386, 
if the data request crosses a 4K page boundary, the 
request is broken into BSIZE pieces. 

Parameters: The strategy argument specifies a pointer to the disk­
strategy routine for the block device. 

The bp argument specifies a pointer to the buffer 
header describing the request to be filled. 

The value of dev is an integer that specifies the minor 
device number. 

The flag argument specifies the I/O operation to be 
performed. The following table describes the flags 
this routine accepts: 

Flag 

BREAD 

BWRITE 

Operation 

Reads from disk to user memory 

Writes from user memory to disk 

Sets if driver is transferring 
variable size records (not 
multiples of BSIZE) 

The u.u_base, u.u_count, and u.u_offset values must be set up prior 
to the pbysio call, and must point to the appropriate user-data area. 
These values must not be odd. If B_TAPE is not set, all transfers 
must be multiples of BSIZE. 
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Syntax: brelse (bp) 
struct buf *bp; 

Description: The brelse routine releases a block buffer to the free 
pool of buffers. This routine is called by a block dev­
ice driver to release a buffer. The contents of the 
buffer are lost and the driver is not allowed to make 
any further reference to the buffer. 
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Parameters: The bp argument is a pointer to the buffer header 
relating to the buffer to be released. 

Return: The buffer addressed by bp is returned to the free 
buffer pool. No errors are possible. 

Syntax: deverr (dp, 01, 02, dey) 
struct iobuf * dp; 
int 01, 02; 
char * dey; 

Description: The deverr routine prints an error message on the 
system console together with some device-speci fic 
information acquired from the parameters passed to 
the routine. The exact format of the output is shown 
in the following printf statement: 

register struct buf *bp; 

bp=dp->b actf; 
printf (IIerrOr on dev %s (%u/%u) ", 
dev, 
major(bp->b dev) , 
rninor(bp->b-dev»; 
printf (", block=%D cmd=%x status=%xO, 
bp->b _ blkno, 
01, 02); 

Parameters: The dp argument is a pointer to the head of the I/O 
request queue for the device. 

The 01 argument contains driver-specific information. 
It is normally used to provide the controller command 
that relates to the I/O operation that failed. 

The 02 argument contains driver-specific information. 
It is normally used to provide the controller status 
information at the time of failure. 

The dev argument is a pointer to a string containing 
the device name. 
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Syntax: disksort (disktab, bp) 
struct iobuf * disktab; 
struct buf * bp; 

Description: The disksort routine adds a block device I/O request 
to the queue of such requests for a particular device. 
The device-strategy routine nonnally calls disk sort. 
The disktab parameter points to the head of the 
request queue, and the bp parameter addresses the buf 
structure containing the request. The queue of 
requests is sorted in ascending order by the disksort 
routine in an attempt to reduce disk head movement. 

Parameters: The disktab parameter is the address of a data struc­
ture iobuf declared within the driver to fonn the head 
of the I/O request queue. 

The bp argument is a data structure buf * that points 
to the I/O request to be added to the queue. 

Syntax: struct buf * 
getablk (flag) 
int flag; 

Description: The getablk routine acquires a free buffer from the 
block buffer pool. The pointer returned by this routine 
addresses a buffer that can be used as required. The 
buffer can subsequently be returned to the buffer pool 
by calling brelseO or iodoneO. 

Parameters: For XENIX-286 , the values ofjlag are: 

Value Results 

o Returns any buffer 

1 Returns only a system-addressable 
buffer 

2 Returns a buffer that is guaranteed not 
to be a system-addressable buffer 
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The value ofjlag is ignored for XENIX-386. 

Return: The routine returns a struct buf * that addresses the 
allocated buffer. 

Warning for 286 only 

There are very few directly addressable buffers in the XENIX kernel. 
Most are already allocated for other functions. If a directly address­
able buffer is required, the value of SABUF may have to be 
increased in the master file. 

Syntax: iodone (bp) 
struct buf * bp; 

Description: The iodone routine signals completion of an I/O 
operation involving the buffer addressed by bp. This 
routine is called when the driver wishes to signal 
either successful or erroneous completion of an I/O 
operation. It differs from the brelseO routine in that 
the higher levels of the kernel I/O system will com­
plete the processing of the buffer before releasing it 
back to the buffer pool using brelseO. 

Parameters: The bp argument specifies a struct buf * that 
addresses the buffer. 

Syntax: iowait (bp) 
struct buf * bp; 

Description: The iowait routine is called by the higher levels of the 
kernel I/O system to wait for the completion of an I/O 
operation specified by the buffer addressed by the bp 
parameter. This routine should not be called within 
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an interrupt routine since it may call the sleep routine. 

Parameters: The bp argument specifies a struct bur * that 
addresses the buffer involved in the I/O operation. 

Return: There is no result returned. The calling process will 
be allowed to proceed once the I/O operation has been 
completed. 
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3.1 Introduction to Character Devices 

This section describes XENIX character device drivers. Character devices 
confonn to the XENIX file model. Their data consists of a stream of bytes 
delimited only by the beginning and end of file. The XENIX system pro­
vides programs with direct access to devices through the special-device 
files. For more infonnation on special-device files, see the section on 
"Special-Device Files." 

Most character-device drivers in XENIX should be designed around the 
special requirements of tenninal devices. There are facilities provided for 
programming functions on input and output (such as character erase, line 
kill, and tab functions), and for setting line options such as speed. Other 
character-oriented devices such as line printers use the same program 
interface as tenninals, but with a different driver. 

Character device drivers use "clists" for transferring relatively small 
amounts of data between the driver and the user program. For more infor­
mation about this process, see the section on "Character-List and 
Character-Block Architecture. " 

3.1.1 Character Device-Driver Routines 

xxinitO, xxopenO, xxcloseO, xxstartO, xxhaltO, xxintrO, 
xxreadO, xxwriteO, xxpollO, xxprocO, xxioctlO, cpassO, 
passcO 

Note that in the above list of routines, all the routines beginning with xx 
are user-supplied driver routines. However, both cpassO and passcO are 
standard routines supplied with XENIX. 

The task-time portion of the character device driver is called when a user 
process requests a data transfer to or from a device under the control of 
the driver. The system detennines which device is being called by read­
ing the major device number of the device that the user wishes to use for 
I/O. The driver's job is to take the user process' requests, check the 
parameters supplied, and set up the necessary infonnation to enable the 
device-interrupt routine to perfonn the I/O. 

In the case of a write to a slow device (that is, one using clists), the driver 
copies the data from the user space into the output clist for the device. In 
the case of direct I/O between the device and user memory (for example, 
magnetic tapes), the driver simply sets up the I/O request. The routines 
that provide the interface between the kernel and character-device drivers 
are described as follows. "xx" is a nominative that refers to the device 
type. For example, a mouse driver would begin its routines with "mous" 
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type. For example, a mouse driver would begin its routines with "mous" 
rather than "xx." Since these routines are universally used, we substitute 
the characters "xx" when dealing with the generic routines: 
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Syntax: xxinit 0 

Description: The xxinit routine initializes the device when XENIX 
is first booted. If present, it is called indirectly 
through the dinitsw table defined in lusrlsyslconjlc.c, 
the kernel-configuration file. It is also good practice 
for the xxinit routine to announce the presence of its 
device. 

Syntax: xxopen (dev, flag, id) 
int, deY, flag, id; 

Description: The xxopen routine prepares the device for the I/O 
transfers and performs any error or protection check­
ing. It is called each time the device is opened. 

Parameters: The value of dev is an integer that specifies the minor 
device number. 

Syntax: 

The value of flag is the oflag argument passed to the 
open system call. 

The value of id is an integer that specifies whether the 
device is a character device (0) or a block device (1). 

xxclose (dev, flag) 
int dev, flag; 

Description: The xxclose routine is responsible for any cleanup 
that may be required, such as disabling interrupts and 
clearing device registers. It is called on the last close 
on a device. 

Parameters: The value of dev is an integer that specifies the minor 
device number. 



Syntax: 

Description: 

Syntax: 

Description: 

Syntax: 

Description: 
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The flag argument is the oflag argument passed to the 
last open system call. 

xxstart 0 

If the task-time portion of the driver detects that the 
device is idle, the xxstart routine can be called to 
start it. This routine checks whether the device is 
ready to accept another transfer request, and if so, 
starts it up, usually by sending it a control word. It is 
often called by both task-time and interrupt-time parts 
of the driver. The xxstart routine is not used by dev­
ice drivers that control tty devices. 

xxhalt 0 

The xxhalt routine, if present, is called when the sys­
tem is shut down. This routine should be used to set 
or clear device registers so that devices will be ready 
for initialization after a warm boot. That is care 
should be taken that all hardware and hardware con­
trollers are reset as they would be by a power cycle. 

xxintr (vec num) 
int vec _ num; 

The kernel calls the xxintr routine when the device 
issues an interrupt. Since the interrupt typically sig­
nals completion of a data transfer, the interrupt rou­
tine must determine the appropriate action: perhaps 
taking the received character and placing it in the 
input buffer, or removing the next character from the 
output buffer and starting the transmission. 

Parameters: The value of vee num is an integer that specifies the 
interrupt vector number of the device that originated 
the interrupt. 
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Syntax: xxread(dev) 
int dey; 

Description: The xxread routine is called when a program makes a 
read system call. The xxread subroutine transfers 
data to the user's address space. A subroutine, passe, 
can transfer one character at a time to the user. This 
subroutine returns a -1 when there are no more char­
acters to be transferred. 

Parameters: The value of dev is an integer that specifies the minor 
device number. 

Syntax: xxwrite(dev) 
int dey; 

Description: The xxwrite routine is called when a program makes 
a write system call. This routine transfers data from 
the user's address space. A subroutine, cpass, can 
transfer one character at a time from the user. This 
subroutine returns a -1 when there are no more char­
acters to be transferred. 

Parameters: The value of dev is an integer that specifies the minor 
device number. 

Syntax: xxpoll (ps) 
int ps; 

Description: The xxpoll routine, if present, is called by the system 
clock at spl60 during every clock tick. It is useful for 
repriming devices that constantly lose interrupts. 

Parameters: The value of ps is an integer that indicates the previ­
ous process' priority when it was interrupted by the 
system clock. The macro USERMODE (ps), defined 
in lusrlsyslhlparam.h, can be used to determine if the 
interrupted process was executing in user mode. 



Warnings 

Syntax: 
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Do not call xxpollO if your interrupt priority level is 
set at spl5 or higher. If you do, you will miss the inter­
rupts at spl6 described above. 

xxproc (tp, cmd) 
struct tty *tp; 
int cmd; 

Description: The xxproc routine performs output-character expan­
sion, outputs characters, and halts or restarts character 
output, according to the desired change in the output. 

Parameters: The tp argument specifies the tty value of the device. 

Syntax: 

The cmd argument specifies the process to be per­
formed. For a list of cmd arguments that are accepted 
by the xxproc routine, see the "Example Driver 
Code." chapter. 

xxioctl (dev, cmd, arg, mode) 
int dev, cmd, mode; 
faddr _ t arg; 

Description: The kernel calls the xxioctl routine when a user pro­
cess makes an ioctl system call for the specified dev­
ice. This routine performs hardware-dependent func­
tions, such as setting the data rate on a character dev­
ice. 

Parameters: The value of dev is an integer that specifies the minor 
device number. 

The value of cmd is an integer that specifies the com­
mand passed to the system call. 

arg specifies the argument passed to the system call. 

The mode argument specifies the flags passed on the 
open system call for the device. 
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3.1.2 Kernel Provided Routines 

The following routines are provided by the kernel to support character 
device drivers. 

Syntax: int cpass 0 

Description: The cpass routine returns the next character in a user 
output request. This function is provided by the kernel 
and does not need to be written by the device driver 
writer. 

Return: 

Syntax: 

The routine returns a character or the value -1, which 
indicates that there are no characters left in the output 
request. 

int 
passc (c) 
int c; 

Description: The passc routine passes characters to a user read 
request. This function is provided by the kernel and 
does not need to be written by the device driver 
writer. 

Parameters: The character c is passed to the read request. 

Return: The routine returns 0 nonnally and -1 when the user 
read request has been satisfied. 

Serial Driver Support Routines 

This section describes the routines provided by the kernel to initialize the 
tty structures, start the tty output, and empty the tty queue. The tty struc­
ture is defined in lusrlincludel sysltty.h. These routines are used almost 
exclusively by serial drivers. 
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emdupmap(), emunmap(), ttinitO, ttiocomO, ttstrtO, 
ttyflushO 

Syntax: emdupmap (tp, ntp) 
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struct tty *tp, *ntp; 

Description: The emdupmap routine duplicates the mapping of a 
given channel for a new channel. 

Parameters: The tp parameter is a pointer to the tty structure for 
the line the mapping should be duplicated from. 

The ntp parameter is a pointer to the tty structure for 
the line where the characters are to be placed. 

Return: 

Syntax: 

This routine has no return value. 

emunmap (tp) 
struct tty *tp; 

Description: The emunmap routine disables mapping on a chan­
nel. 

Parameters: The tp parameter is a pointer to the tty structure of the 
mapped line that is to have the mapping disabled. 

Return: This routine has no return value. 

Syntax: ttinit(tp) 
struct tty *tp; 

Description: This routine initializes the tty structure to specific 
default values. To set up the default settings for a tty 
device, call this routine immediately after opening the 
tty device. ttinit initializes the t line, t ijlag, t ojlag , 
t_cjlag, t_ljlag, and t_cc fields of the ttY structure. 

Parameters: tp is a struct tty* that points to the tty data structure 
associated with the device being used. 
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Syntax: ttiocom(tp, cmd, addr, flag) 
struct tty *tp; 
int cmd; 

Description: This routine is called for all common tty ioctl calls. It 
is called by the xxioctl() routine after a device 
specific ioctl has been performed. Parameters: tp is 
a struct tty* that points to the tty data structure associ­
ated with the device being used. 

Syntax: 

cmd is an integer specifying an ioctl command. 

addr specifies the address of the user space where the 
parameters reside. 

flag specifies whether the command is a read or write 
operation. 

ttrstrt( tp) 
struct tty *tp; 

Description: This routine restarts tty output after a timeout( ) call. 
It is passed as an argument by the device driver to 
timeout( ) calls. 

Parameters: tp is a struct tty* that points to the tty data structure 
associated with the device being used. 

Syntax: ttyflush(tp, cmd) 
struct tty *tp; 

Description: This routine flushes the tty queue. 

Parameters: tp is a struct tty* that points to the tty data structure 
associated with the device being used. 

cmd specifies whether to flush the input (FREAD) 
queue or the output (FWRITE) queue. (FREAD) and 
(FWRITE) are defined in lusrlsyslhlfile.h 
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Character List Routines 

The kernel contains a group of small buffers called character lists, or 
dists. A dist structure is the head of a linked list queue of characters. 
The elements in the linked list are called cblocks and each cblock can 
hold a small number of characters. These are used for buffering low­
speed character devices. 

Drivers that do not use the tty structure must declare a queue header of 
type dist, or two queue headers if both input and output are to be 
buffered. The tty structure already contains declarations for the needed 
queue headers. There are eight routines that the driver can use to manipu­
late dist buffers, as described below. All these routines can be used dur­
ing interrupt-time processing. 

Syntax: getc(cp) 
struct dist *cp; 

Description: This routine moves one character from the dist buffer 
for each call. 

Parameters: cp specifies the dist buffer from which characters are 
moved. 

Return 

Syntax: 

This routine returns the next character in the buffer or 
-1 if the buffer is empty. 

putc (c, cp) 
int c; 
struct dist *cp; 

Description: The putc routine moves one character to the clist 
buffer for each call. 

Parameters: The value of c is an integer that specifies the charac­
ter to be moved. 

A pointer cp specifies the clist buffer where the char­
acter is placed. 
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Return: 

Syntax: 

This routine returns 0 if it places the specified charac­
ter in the buffer, or returns -1 if there is no free space. 

struct cblock * 
getcb (cp) 
struct dist *cp; 

Description: The getcb routine moves one cblock from the dist 
buffer for each call. 

Parameters: The pointer cp specifies the dist buffer the cblocks 
are moved from. 

Return: 

Syntax: 

This routine returns a pointer to the first cblock onthe 
clist or NULL if the dist is empty. 

getcbc (bp) 
struct cblock *bp; 

Des~:ription: The getcbc routine returns the first character from the 
cblock pointed to by bp. 

Parameters: The pointer bp specifies the cblock the character is 
taken from. 

Return: 

Syntax: 

This routine returns the first character from the cblock 
that bp points to. 

getcbp (p, cp, n) 
struct dist *p; 
char *cp; 
int n; 

Description: The getcbp routine copies characters from the 
spe~ified dist, p, to the buffer addressed by the cp 
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argument. 

Parameters: The pointer p specifies the clist buffer the characters 
a;e copied from. 

Return: 

Syntax: 

The argument cp is a char * that addresses the buffer 
the characters are copied to. 

The value of n is the number of characters to be 
copied (which should denote the maximum size of the 
available buffer). 

This routine returns the number of characters actually 
copied (which is less than or equal to n). 

struct cblock * 
getcf () 

Description: The getcf routine takes a cblock from the freelist and 
returns a pointer to it. 

Return: 

Syntax: 

Returns a pointer to a cblock if available. Otherwise, 
the routine returns NULL. 

putcb (cbp, cp) 
struct cblock *cbp; 
struct dist *cp; 

Description: The putcb routine moves one cblock to the c1ist buffer 
for each call. 

Parameters: The pointer cbp specifies the cblock to be moved. 

Return: 

The pointer cp specifies the c1ist buffer to where the 
cblock is moved. 

This routine returns 0 after placing the specified 
cblock in the buffer. 
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Syntax: putcbp (p, cp, n) 
struct dist *p; 
char *cp; 
int n; 

Description: The putcbp routine copies characters from a buffer to 
the clist given as an argument. 

Parameters: The pointer p specifies the clist buffer the characters 
are copied to. 

Return: 

Syntax: 

The argument cp is a char * that addresses the buffer 
the characters are copied from. 

The value of n is the number of characters to be 
copied to the dist. 

This routine returns the number of chracters 
transferred. This is equal to n if there was sufficient 
room in the clist or less than n if the clist was filled 
before the transfer was complete. 

putcf (cbp) 
struct cblock *cbp; 

Description: The putcf routine puts the specified cblock onto the 
freelist. 

Parameters: The argument cbp specifies a pointer to a cblock. 



Note 

Character Device Drivers 

• All the cblocks not currently being used are kept on a list of 
free memory blocks. Since there are a limited number of 
cblocks in the system, each driver must be judicious in deter­
mining how many cblocks are used for buffering input and 
output. 

• For output buffering, the driver usually follows a high- and 
low-water mark convention. The driver accepts and queues 
requests from the user process until the buffer has reached its 
high-water mark. At that point, the requesting processes are 
suspended by means of the sleep routine. When the buffer has 
drained below the low-water mark, the suspended processes 
are awakened, and can fill the buffer again. 

• For input buffering, the driver usually buffers the data up to 
some limit. When this limit is reached, data is discarded to 
make room for the more recent data. 

Line-Discipline Routines 

If you use a serial device as an interactive terminal, it must support vari-
0us functions such as erasing characters and lines, echoing, and buffering 
input. The code needed to perform each of these functions has been 
separated into a set of routines that roughly corresponds to the character­
device function. Each of these routines is called a line discipline. One 
standard line discipline is provided by default. Each of the routines is 
called through the linesw table initialized in lusrlsyslconJlc.c; each entry 
in this table represents one line discipline, and has entries for eight func­
tions. 

The I_open routine is called on the first open of a device. The I_close 
routine is called on the last close of the device. The I read and I write 
routines are called by the driver's read and write routines, to pass Charac­
ters to and from the calling process. The I input routine buffers incoming 
characters at interrupt time. The IJoctCroutine calls specific routines 
related to line discipline. The I_output routine gets the next block of 
characters for output at interrupt time. The 1_ mdmint routine is not 
currently used. 
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3.1.3 Interrupt Routines for Character-Device Drivers 

The device-interrupt routine is entered whenever one of its devices raises 
an interrupt. Note that in general one driver may control several devices, 
but that all interrupts are vectored through a single function-entry point, 
usually called xxintr, where .xx is a mnemonic that refers to the device 
type (see the Section on "Naming Conventions"). It is the driver's 
responsibility to decide which device caused the interrupt. 

When a device raises an interrupt, it makes available some status infor­
mation to indicate the reason for the interrupt. The driver-interrupt rou­
tine decodes this information. If it indicates a transfer just completed, the 
wakeup routine will alert any process waiting for the transfer to com­
plete. It then makes a check to see if the device is idle and, if so, looks for 
more work to start up. Thus, in the case of output to a teoninal, the inter­
rupt routine looks for more work in the clists each time a transfer com­
pletes. 

3.1.4 Character-List and Character-Block Architecture 

The character list (c1ist) structure provides a general character-buffering 
system for use by character device drivers. The mechanism is designed 
for buffering small amounts of data from relatively slow devices, particu­
larly terminals. 

The XENIX kernel has a pool of character blocks called cblocks. Each 
cblock contains a link to the next cblock and an array of characters. A 
c1ist is a linked-list queue of cblocks. 

The getc and putc kernel routines put characters into and remove charac­
ters from a c1ist. Drivers using c1ists can use these routines. Note that the 
routines are not the same as the standard I/O library routines of the same 
name. 

The static-buffer header for each c1ist contains three fields: 

• a count of the number of characters in the list 

• a pointer to the first cblock in the list 

• a pointer to the last cblock 

The c1ist buffers fonn a single linked list as shown in the following 
diagram: 
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struct { 

int c_cc: 

struct cblock *c_cf; 

struct cblock *c cI; 
} clist; -

next 

cbiock 

--+ 

Character Device Drivers 

~ next ~ 0 

cblock cblock 

-+ 

There is a protocol defined for use of the clists to prevent a particular pro­
cess or driver from consuming all available resources. Two constants for 
the clist high- and low-water marks are defined in the file named tty.h. A 
process can issue write requests until the corresponding clist hits the 
high-water mark. The process is then suspended and I/O perlormed. 
When the list reaches the low-water mark, the process is awakened. Read 
requests use a similar protocol. 

3.1.5 Terminal-Device Drivers 

Terminal-device drivers use clists extensively. For each terminal line 
(each minor device number), the driver declares static-clist headers for 
three clists. These clists are: the raw queue, the canonical queue, and the 
output queue. 

When a process writes data to a terminal device, the task-time part of the 
driver puts the data into the output queue, and the interrupt routine 
transfers it from the queue to the device. 

When a process requests a read of data from the terminal, the situation is 
slightly more complicated. This is because XENIX provides for some pro­
cessing of characters on input, at the option of the requesting process. For 
example, in normal input the BKSP key is interpreted as "delete the last 
character input," and the line-kill character means "delete the whole 
current line." Certain special characters (such as BKSP) have to be 
treated in context; that is, they depend upon surrounding characters. To 
handle this, XENIX drivers use two queues for incoming data. 

These two queues are the raw queue and the canonical queue. Data 
received by the interrupt routine is placed in the raw queue with no data 
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processing. At task time, the driver decides how much processing to do. 
The user process has the option of requesting raw input, in which it 
receives data directly from the raw queue. Cooked (the opposite of raw) 
input refers to the input after processing for ERASE, line kill, DELETE, 
and other special treatment. In this case, a task -time routine, canon, 
transfers data from the raw queue to the canonical queue. This performs 
BKSP and line-kill functions, according to the options set by the process 
using the ioetl system call. 

In XENIX System V, the direct clist processing for tty device drivers is 
normally handled by the specific line discipline. The only processing that 
the device driver needs to perform is interrupt-level control. The device 
driver provides interrupt-level control by emptying and filling structures 
called character-control blocks (ccblock). Each tty structure has _ a 
ccblock for transmitter (t tbuj) control and a ccblock for receiver (t rbuj) 
control. The ccblock structure has the following format: -

struct ccblock 

} ; 

caddr t c_ptr; 
ushort t c_count; 
ushort t c_size; 

/*buffer address*/ 
/*character count*/ 
/*buffer size*/ 

At receiver-interrupt time, the driver fills a receiver ccblock with charac­
ters, decrements the character count, and calls the line-discipline routine 
IJnput. At transmitter-interrupt time, the driver calls xxproc and the 
line-discipline routine, I output, to get a transmitter ccblock, and then 
outputs as many characters as possible. For more information about code, 
see the "Example Driver Code" chapter. 

The basic flow of data through the system during terminal I/O is shown in 
the following diagram: 
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I I 
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There are two slight complications to the scheme presented in the preced­
ing diagram. These are output-character expansion, and input-character 
echo. 

Output expansion occurs for a few special characters. In cooked mode, 
tabs may be expanded into spaces, and the NEWLINE character is mapped 
into RETURN plus LINEFEED. There is a facility for producing escape 
sequences for uppercase terminals, and delay periods for certain charac­
ters on slow terminals. Note that all of these are simple expansions, or 
mapping single characters, and so do not require a second list, as is the 
case for input. Instead, all the expansion is performed by the xxproc rou­
tine before placing the characters in the output c1ist. 

Character echo is an option required by most user processes. With this 
option, all input characters are immediately echoed to the output stream 
without waiting for the user process to be scheduled. Character expan­
sion is performed for echoed characters, as it is for regular output. Char­
acter echo takes place at interrupt time, so that a user typing at a terminal 
gets fast echo, regardless of whether his program is in memory and run­
ning, or is swapped out to a disk. 
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3.1.6 Other Character Devices 

The following character devices are ccmmonly found on XENIX systems: 

• the console 

• terminals 

• line printers 

• magnetic-tape drivers 

The system console has a large section of dedicated kernel code to handle 
its special needs. See the following section on "Writing a Video Adapter 
Driver" for more information on the system console and multiscreens. 

Terminals receive a lot of special attention in the XENIX system. Line 
printers and magnetic-tape drivers tend to use existing kernel facilities 
with little special handling. 

Line Printers 

Line printers are relatively slow, character-oriented devices. The drivers 
use the clist mechanism for buffering data. However a line printer driver 
is generally simpler than a terminal driver because there is less process­
ing of output characters to do, and there is no input. 

Magnetic-Tape Drivers 

Magnetic tape is a special case. The data is arranged on the physical 
medium in blocks, as on a disk. However, it is almost always accessed 
serially. Furthermore, there is generally only one program accessing a 
tape drive at a time. Thus, the management scheme of the kernel buffer is 
not applicable to tapes. Nor is the clist mechanism applicable, because of 
the large amount of data involved. 

Usually tape drivers provide two interfaces: a block and a character inter­
face. The character interface is used for raw, or physical, I/O directly 
between the device and the user process' address space. The block inter­
face makes use of the XENIX kernel-buffer pool and buffer-manipulation 
routines to store data in transit between device and process. For more 
information on providing the facility for raw I/O, see the section on 
"Character Interface to Block Devices." 
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Video Device Drivers 

4.1 Writing a Video Adapter Driver 

The XENIX video driver is designed to make use of sub-drivers written for 
individual video hardware. The top level of the video driver is provided 
with your kernel, along with a group of standard monochrome, CGA, 
EGA, and VGA sub-drivers. If you wish to use a different or non-standard 
video card, you must provide a sub-driver for that card. The following 
example shows the relationship between the user, the kernel, the video 
driver, the sub-driver, and the hardware: 

_______________ I User [ __________ 
. tttttttt . 

Monitor A KEYBOARD MOnitor B 

t 
KERNEL 

There is a predefined set of entry points for video subdrivers. These entry 
points are eleven routines that must be provided by the device driver 
writer. These eleven routines include three initialization routines, called 
xxcmos, xxinit, and xxinitscreen. Secondly, there are four data handling 
routines, called xxscroll, xxclear, xxcopy, and xxpchar. Finally, there are 
four special routines that you must provide. These are xxscurs, xxioctl, 
xxsgr, and xxadapctl. As with all device drivers, you replace the prefix 
"xx" with the unique two to four letter identifier for your particular 
driver. As previously stated, there are supplied sub-drivers for standard 
monochrome, CGA, EGA and VGA adapters. The data structures and 
entry points for these and sub-drivers are described in the file 
lusrlsysliol cnconfc. 

Video Driver Data Structures 

The Video driver provides three data structures for use with sub-drivers. 
These are: 
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struct mscrn 
struct adapter 
struct kbgrp 

struct mscrn is a structure that is replicated for each individual mul­
tiscreen. Each structure contains state information for the multiscreen 
(current color, mode, etc.) and a series of pointers. The complete 
definition of this structure can be found in the file lusrlincludel syslvid.h. 

There is a pointer to struct kbgrp, the keyboard group that the mul­
tiscreen belongs to. Note that all multiscreens on the main system moni­
tor will have the same keyboard group. There is also a pointer called 
mv _ savscrn that points to the memory location where the screen image is 
saved when the multiscreen is not active. And finally, there is a pointer to 
struct adapter; the structure containing information including the entry 
points into the adapter routines that manage the monitor on which the 
multiscreen appears. Here is a graphic representation of the relationship 
between struct mscrn and the other parts of the driver: 

struct mscrn 

kbgrp ======rL------' 
( savscrn 

struct adapt 
adapswO 

er 

adapter ) XX Driver 

I state info I 
EGA Driver 

struct adapter is a structure that is replicated for each sub-driver and 
contains pointers to each of the eleven routines that a sub-driver should 
have, and other pointers to the struct mscrn of the current multiscreen 
and to the video RAM of the card that the sub-driver drives. The follow­
ing is a graphic representation of the relationship between struct adapter 
and the other hardware and software that comprise the video system: 
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struct adapter 

xx Driver 

displayed screen 
video RAM ) XXboa~ 

I Eleven XX function pOintersl 

struct kbgrp defines a keyboard group. This structure is replicated for 
every keyboard attached directly to your computer. (i.e. keyboards on ter­
minals attached via serial lines are not included.) struct kbgrp has a 
pointer to each multiscreen that accepts input from the keyboard, a 
pointer to struct adapter, a variable indicating the current muitiscreen, 
and any pertinent keyboard data. The following picture is a graphic 
representation of the relationship between struct kbgrp and the other 
software fo the video driver: 

struct kbgrp 
struct 
mscrn[] 

multiscreens 
struct 

( adapsw[] 

adapter switch ) XX Driver 

G) current screen EGA Driver 

I keyboard data I 
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4.1.1 Video Sub-Driver Routines 

Here is a close look at the eleven routines you must provide to create a 
video sub-driver. 

4-4 

Syntax: xxcmos(*prip, *secp) 
int *prip; 
int *secp; 

Purpose: This routine should read the hardware characteristics 
and specify whether the video card in question is to be 
the primary card. In addition, you can use this routine 
to do any other checks or start-up operations you 
desire. For example, the ega driver uses egacmosO to 
read the switches on the card. 

Parameters: The pointers *prip and *secp point to the primary and 
secondary video devices to be used. Your driver can 
assign itself as the primary device by assigning its 
value from the adapter structure r type into *prip. 
Likewise, you can also assign your driver to be secon­
dary by as singing its value to *secp. 

Syntax: xxinit(*adp) 
struct adapter *adp; 

Purpose: This routine is called only once; at driver initializa­
tion time. Use this routine to do any initialization to 
your hardware that needs to be done. 

Parameters: *adp points to the adapter that is to be initialized. 

Return: This routine can return two flags: ACPRESENT and 
ACCOLOR, masked together in a bitwise OR. 
ACPRESENT indicates that device is present, and 
ACCOLOR indicates that color is to be supported. 



Syntax: 

Purpose: 

xxinitscreen(*msp} 
struct mscrn *msp; 

Video Device Drivers 

This routine is called once per multiscreen. Any ini­
tialization that needs to take place on a per-screen 
basis should happen here. 

Parameters: *msp points to the multi screen that is being initial­
ized. 

Syntax: 

Purpose: 

xxscroll(*msp, cnt) 
struct mscrn *msp; 
int cnt; 

This routine scrolls the screen up or down. Upward 
scrolling is obtained by specifying cnt as a positive 
integer. Downward scrolling is obtained by specifying 
cnt as a negative integer. In either case, the integer 
value of cnt is the number of lines to be scrolled. 

Parameters: *msp points to the multiscreen that is being scrolled. 
cnt is the number of lines to be scrolled. 

Syntax: 

Purpose: 

xxclear(*msp, drow, dcol, ent} 
struct mscrn *msp; 
int drow, dcol, cnt; 

This routine clears any portion of the screen from one 
character to the entire screen. The symbol positions 
are cleared with the space (Ox20) font character using 
the current attributes (such as reverse video.) 

Parameters: *msp points to the multiscreen that is being cleared. 
drow and dcol are the destination row and column. 
cnt specifies the number of displayed symbols to be 
cleared. 
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Syntax: xxcopy(*msp, drow, dcol, srow, scol, cnt) 
struct mscrn *msp; 
int drow, dcol, srow, scol, cnt; 

Purpose: This routine copies data from one portion of the 
screen to another. For example, if a word on the 
screen is deleted, perhaps by an editor command, this 
routine implements the escape sequence the editor 
would use to move the remaining text over, filling in 
the blank space. Attributes (if any) are also copied. 

Parameters: *msp points to the multiscreen that is being copied. 
drow is the row where receiving is to begin. dcol is 
the column (space) where receiving is to begin. srow 
is the source row from where the copied data is to be 
drawn. scol is the source column (space) in srow 
from where the information is to be drawn. cnt is the 
number of characters to be copied. 

Syntax: xxpchar(*msp, *bp, cnt) 
struct mscrn *msp; 
int *bp; 
int cnt; 

Purpose: This routine writes data beginning at the current cur­
sor position. 

Parameters: *msp points to the multiscreen that is being written 
to. bp is the buffer pointer supplying the data. cnt is 
the number of characters to be written. 

Syntax: 

Purpose: 

xxscurs(*msp) 
struct mscrn *msp; 

This routine moves the cursor from one muItiscreen to 
another. 

Parameters: *msp points to the new multiscreen receiving the cur­
sor. 
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Syntax: xxsgr(*msp, gr) 
struct mscrn *msp; 
int gr; 

Purpose: This routine provides support for the ANSI standard 
video functionality. sgr stands for Set Graphics Ren­
dition. In this case, a "Rendition" means a video 
effect, such as reverse video, underlining, or blinking. 
You should write this routine to accept ANSI standard 
video instructions and convert them to whatever 
codes your hardware requires to perform the standard 
video functions. 

Parameters: *msp points to the multiscreen receiving the instruc­
tions. gr is the ANSI code for the desired graphics 
rendition. Standard values of gr that are passed to 
your xxsgr routine are: 

SGR_NORMAL ° 
SGR_BOLD 1 
SGR_PRBLKCTL 3 
SGR_UNDERL 4 
SGR_BLINK 5 
SGR_REVERSE 7 
SGR_ CONCEALED 8 

/* return attributes to normal * / 
/* called INTENSE in video'ese */ 
/* PR's blink bit control */ 
/* underline * / 
/* blink */ 
/* reverse video * / 
/* hide characters * / 

/* Fonts 0, 1, and 2 are reserved * / 

SGR_FONT3 
SGR_FONT4 
SGR_FONT5 
SGR_FONT6 
SGR_FONT7 
SGR_FONT8 
SGR_FONT9 
SGR_FOREBLACK 
SGR_FORERED 

13 /* alternate font #3 * / 
14 /* alternate font #4 * / 
15 /* alternate font #5 * / 
16 /* alternate font #6 * / 
17 /* alternate font #7 * / 
18 /* alternate font #8 */ 
19 /* alternate font #9 * / 
30 /* ANSI foreground colors * / 
31 /* ANSI foreground colors * / 
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SGR_FOREGREEN 
SGR_FOREYELOW 
SGR_FOREBLUE 
SGR_FOREMAGENTA 
SGR_FORECYAN 
SGR_FOREWHITE 
SGR_BACKBLACK 
SGR_BACKRED 
SGR_BACKGREEN 
SGR_BACKYELLOW 
SGR_BACKBLUE 
SGR_BACKMAGENTA 
SGR_BACKCYAN 
SGR_BACKWHITE 

32 /* ANSI foreground colors */ 
33 /* ANSI foreground colors * / 
34 /* ANSI foreground colors * / 
35 /* ANSI foreground colors */ 
36 /* ANSI foreground colors * / 
37 /* ANSI foreground colors */ 
40 /* ANSI background colors * / 
41 /* ANSI background colors * / 
42 /* ANSI background colors * / 
43 /* ANSI background colors * / 
44 /* ANSI background colors * / 
45 /* ANSI background colors * / 
46 /* ANSI background colors * / 
47 /* ANSI background colors */ 
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Syntax: xxioctl(*msp, cmd, arg, mode) 
struct mscrn *msp; 
int cmd; 
char arg; 
int mode; 

Purpose: This routine provides support for any ioctls you may 
want to support. In practice, you can use this function 
to support standard ioctls to your hardware or you can 
create your own ioctls. 

Parameters: *msp points to the multiscreen receiving the instruc­
tions. cmd is the ioctl command. The standard ioctls 
are CONS_GET and MAP_CONS. These stand for 
CONSOLE GET and MAP CONSOLE. arg is any 
arguments to the ioctl command. mode is the new 
mode (such as graphics vs. text) for your card. See 
the screen(HW) manual page for any additional ioctls 
you may need to support. 

Syntax: xxadapctl(*msp, cmd, arg) 
struct mscrn *msp; 
int cmd, arg; 
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Purpose: This routine provides support for adapter specific 
functionality between the Video driver and your 
adapter driver. 

Parameters: *msp points to the multi screen receiving the instruc­
tions. cmd is the ioctl command. arg is any argu­
ments to the ioctl command. Standard values of cmd 
passed to your routine are: 

AC_BLINKB 
AC_FONTCHAR 
AC_DEFCSR 
AC_BOLDBKG 
AC_DEFNF 
AC_DEFNB 
AC_ONN 
AC_DEFRF 
AC_DEFRB 
AC_ONR 
AC_DEFGF 
AC_DEFGB 
AC_ONG 
AC_SETOS 
AC_PRIMODE 
AC_SAVSZQRY 
AC_SAVSCRN 
AC_RESSCRN 
AC_CSRCTL 
AC_ USERFONT 
AC_IOPRIVL 
AC_SOFTRESET 
AC_SENDSCRN 
AC_ VTKDPARAM 
AC_TXTRECVR 
AC_TXTRELSE 

o /* Clear or Set the blink bit * / 
1 /* display font character * / 
2 /* define Cursor type * / 
3 /* tum on intense bg color * / 
10 /* define normal foreground * / 
11 /* define normal background * / 

12 
13 /* define reverse foreground * / 
14 /* define reverse background * / 

15 
16 /* define graphic foreground * / 
17 /* define graphic background * / 

18 
30 /* set overscan colors * / 
100 /* return primary text mode * / 
101 /* return size (bytes) of state * / 
102 /* save screen * / 
103 /* restore screen * / 
104 /* arg=O hide cursor, arg= 1 show cursor * / 
105 /* load or dump the soft font * / 
106 /* grant or revoke 10 privl */ 
107 /* reset text mode (keep colors)* / 
108 /* write screen chars to stdin * / 
200 /* get VPIX display parameters */ 
201 /* recover text mode from DOS * / 
202 /* release text mode to DOS * / 

The arguments to the above commands will be such values as are 
appropriate. For example, an argument to AC_FONTCHAR would be the 
new font to be used. 
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Compiling and Linking Drivers 

5.1 Compiling, Configuring, and Linking Drivers 

To make your driver source code part of the XENIX kernel, you first com­
pile your driver in the same way that the rest of the kernel is compiled. 

Next, make the various routine names and driver attributes of your driver 
accessible to the XENIX kernel using the configure utility. This program 
creates several multi-dimensional tables of routine names and driver attri­
butes. 

Then, link the kernel by adding the new module to the Id(C) command 
line in the make/tie provided, and running make(CP). 

5.1.1 Compiling Device Drivers 

Use the XENIX C compiler to compile C source code, or the assembler to 
create an object module from assembler source. Use the cc(CP) or 
masm(CP) commands. 

The cc command line must contain the following switches: 

-K Disable stack probes. 

-DM_KERNEL Required for conditional code in standard header files 

It should also contain ONE of the following: 

-M3 

-M2em 

-MOem 

For 80386 processors. 

For 80286 processors. Enables 80286 instructions, 
near, and far keywords. Compiles middle model, to 
conform with the kernel program model. 

For 8086 processors. Uses only 8086 instructions. 
Enables near and far keywords. Compiles middle 
model, to conform with the kernel program model. 

For device driver subroutines written in assembly language, the masm 
command line should contain the following switch: 

-Mx Preserves lower case in output. Required for the 
linker to be able to resolve external declarations to C 
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functions. 

An appropriate cc or masm command line will produce a corresponding 
".0" module. For example, scsi.c becomes the object module scsi.o. 

5.1.2 System Configuration 

System configuration is the process of placing references to your driver's 
main functions in various tables. Since the existing parts of the kernel do 
not know what the functions in your new driver are called, driver func­
tions are referenced by indirect calls into the configuration tables. 

The configure utility generates and assembles the c.asm and space.inc 
source modules that contain these indirect function references. The gen­
erated space.inc file is one of the header files that is inserted into 
space.asm before that module is assembled into space.o. The c.asm file is 
assembled into the object module c.o. Both object modules are then 
linked into the kernel. 

Some older "preconfigured" drivers did not require configure to be run, 
as all function references were already in place. For the rest, composing 
the driver's configuration command is discussed in configure(ADM), 
Using the Link Kit, and briefly, below. Though it may seem easier to edit 
the C and assembly language configuration files directly, configure insu­
lates you from potential changes to the configuration files, and allows you 
to use the same procedure to configure your driver as the end-user who 
receives your driver in binary form. 

Preconfigured Drivers 

Earlier releases made provisions for several common types of drivers by 
providing null routines that were linked in if the corresponding drivers 
were not present. Drivers for which pre configuration was provided will 
still link in as before. Simply add the name of the driver's ".0 " module 
to the ld command line, as before. The earlier scheme of patching the 
interrupt vector within vecintsw at driver initialization time should still 
be used. 

Determining the Vector Number 

You must determine your interrupt vector number so you can inform the 
kernel that your driver should be called when an interrupt is pending on 
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For the 80386 or 80286 mapped kernel, your peripheral device can inter­
rupt on one of the request lines of either a master interrupt controller or 
single slave interrupt controller, which is connected to master request line 
2. Your XENIX vector number does not correspond directly to the bus 
request numbers. Instead, it is mapped to logical vector numbers which 
allow for the presence of slave interrupt controllers connected to the main 
one. 

The index of the appropriate vector is determined as follows: 

1. If the vector used is on the master controller, just use the vector 
number directly. 

2. If it is on a slave controller (only one is currently supported for the 
80286 and 80386, on master request line 2), take the request line 
used on the slave controller and add octal 30. The result can then 
be used for your driver in lusrlsyslconJlmaster. 

For example, if your device uses request line 3 on the slave controller, 
you would specify 33 in the master file. 

Vector Manipulation for Preconfigured Device Drivers 

In preconfigured drivers, entry points have been provided for all neces­
sary routines (open, close, etc.) except for the interrupt handler. This must 
be patched in at system start-up time as follows: an extra entry point has 
been provided for each of the drivers expected to require an interrupt vec­
tor. This entry point's suffix is "-init". This function must replace the 
appropriate vector in the vecintsw[ ] table with a pointer to the interrupt 
handler function for the particular device driver. This structure is 
declared in the file lusrlsyslhlconj.h, and an example of its usage is in c.c. 

In addition to patching the vecintsw[ ] table, the driver init routine should 
patch the vecintlev[ ] table. This table specifies the priority or spllevel of 
the driver. Most drivers are priority level spl5. 
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An example driver fragment for a hypothetical sp/S driver "xx" using bus 
vector 12 is shown below: 

#include " .. /h/param.h" 
#include " .. /h/conf.h" 

xxintr () 
{ 

#define NUM (030 + (12-8)) 

int (*xxoldintr () ) () ; 

xxinit () 
{ 

xxoldintr = vecintsw[NUM]; 
vecintsw[NUM] xxintr; 
vecintlev[NUM] = 5; 

/* perhaps some other one-time */ 
/* driver-local initialization */ 

It should be noted that this may not be applicable for all device drivers 
under all circumstances. 

See the section entitled "Vector Collision Considerations" for more 
information on the selection of interrupt vectors. 

Using configure 

Before configure can be run, you need to know an unused major device 
number for your device, the vector or vectors on which your device inter­
rupts, and the list of routines in your driver that must be added to the 
configuration tables. 

The configure utility enforces the rules that all routines in the driver 
begin with a common prefix and that the prefix be between 2 and 4 letters 
long. If your driver prefix is incorrect or inconsistent, change it. 
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Please read configure(ADM) and "Adding Device Drivers with the Link 
Kit" in the XENIX System Administrator's Guide. This chapter contains a 
detailed description of how to create a configure command line for a 
driver binary. Authors of drivers have an advantage in that they do not 
have to discover the names of the routines; the names that must be 
presented to configure are those chosen for the routines that have so far 
been described, such as the name of a character driver's write routine. 
Maintain a backup copy of the master and xenixconf files while learning 
to use configure: if you make a mistake you can restore the old files. 

Also note that configure requires that block drivers have a tab structure, 
and indeed, the vast majority of block drivers do. If you are writing a 
non-interrupting block driver, simply declare a struct iobuf xxtab within 
your driver. 

5.1.3 Linking The Kernel 

Your Link Kit contains a make file for linking the kernel. The reference to 
!he new driver should be placed in this file on the ld command line prior 
to any of the object library references (the pairs of options of the fonn -I 
lib_xxx), and following all other object file references. That is, your 
object file must follow KMseg.o, oemsup.o, c.o, and any other files 
already on the command line. 

For binary distribution, also edit the file lusrlsyslconjllink xenix to link 
the new driver in with the kernel. Here too, place the reference to the new 
driver on the Id command line prior to any of the object library references 
and following all other object file references. 

For preconfigured drivers, the Id command will find the actual driver first 
and thus stop looking for it in the libraries, which contain the null rou­
tines that are normally linked in. 

To link your driver, enter: 

make 

link_xenix is what the end user uses to link your driver into the kernel. 
The end user may not have purchased the XENIX development system and 
therefore may not have make(CP). However, Id(M) comes with every 
system, and no special utility is required to run shell scripts. 

Once you have a new XENIX kernel, back up the old one, by typing this or 
a similar command: 
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cp .Ixenix Ixenix.new 

The new XENIX kernel must be in the / directory. Note that in some ver­
sions, a kernel must be one of the first 64 entries in the / directory for boot 
to find it. 

5.2 Driver Debugging 

The following sections contain information on getting a driver to run, and 
what to look for if it doesn't. 

5.2.1 Booting the New Kernel 

Halt your system by entering: 

/etc/haltsys 

You see the "** Normal System Shutdown **" message. Press return to 
see the boot prompt: r ~oot 
If you press RETURN, or simply do nothing, the default operating system 
image is loaded and started. In order for the bootstrap program to locate 
and load any newly installed device drivers, it must be told to read the 
/xenix.new file, which contains the kernel that includes the device driver. 
To boot the new kernel, enter, at the boot prompt: 

xenix.new 

The system will boot up with the "new" kernel. 

5.2.2 General Debugging Hints 

Debugging a device driver is more an art than a science. This section 
touches on some of the more useful techniques to try if your driver isn't 
working. 
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1. Make sure that you are actually talking to your driver. 

If you get errors such as "no such device" (ENODEV) when you 
try to access your driver, you might have a problem with either the 
device node itself, or with your driver configuration, as specified in 
the Link Kit configuration file c.c. 

Check your major device number correspondence. Make sure that 
the major device number and type of the device node you are try­
ing to access corresponds with the appropriate line in the _bdevsw 
or _ cdevsw array in c .asm. For example, you might have written a 
new printer driver, whose major device number is 6, whose name is 
"pa", and whose type is "character". 

First, check the device node, to make sure that /dev/pa is a charac­
ter special device, whose Is -I listing is along the following lines: 

crw-rw-rw- 1 root 6, a Apr 29 19:56 /dev/pa 

Then, check c .asm, to make sure that there is a set of functions in 
the _cdevsw table that have the "pa" prefix. The file will be simi-
lar to this: . 

DW $CFG_C6 
DD _paopen 
DD _paclose 
DD nulldev 
DD pawrite 
DD :=paioctl 
DW OOH 
DW OOH 

The parallel driver has only the routines paopen, paclose, pawrite 
and paioctl as part of the cdevsw table. Other drivers might have 
read, _tty, or in the future;-stream entries. 

Also check the constants cdevcnt and cdevmax ( bdevcnt and 
_bdevmax for a block driver) to make sure they are at least 1 
greater than the major number of your driver. 

If this correspondence does not hold, revert back to the older mas­
ter and xenixconf files and rerun configure. 

2. Make sure your device registers are where you think they ere. 

The effect of accessing a nonexistent port address varies from 
machine to machine, but, for example, on the IBM XT or AT you 
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can read values using inb( ) from nonexistent hardware and receive 
no error code, just a random value. 

Since at least some of the I/O ports on most peripheral controllers 
are both read and write, you should make sure you can write to one 
of your device's registers using outbO, then read back the value 
you've written using inb(). Even when none of the registers are 
read/write, as is true on some mouse controllers, you can at least 
read from one of the status registers using inb() , and make sure 
that the result is reasonable. 

3. Work towards getting simple I/O from the driver first, complex I/O 
later. 

Character devices are usually easier to write to than to read from. 
For a serial or a printer driver, your first test will probably be to 
echo "hello, world" to the device, or something equally simple 
and traditional. 

Block devices are generally easier to read from than to write to, 
since you have to read back the block you've written to know if 
you've written it successfully. Many block devices have a "get 
drive parameters" command, or something similar, which is even 
more basic than either reading or writing. 

4. Use kernel printj( ) statements for debugging. 
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Although you shouldn't overuse printj() (in a finished driver, 
printf( ) should only be used for unrecoverable errors), it can be an 
invaluable debugging tool. Coupled with #ifdef DEBUGs and a 
global "debug level" flag, you can tailor the verbosity of your 
debug output to the situation at hand. 

For example, you may have two debug levels: 

#ifdef DEBUG 
if ( mydebugflg > 0 ) 
printf (" got to myopen () \n ") ; 

if ( mydebugflg > 2 ) 
printf("open parameters:"); 
printf("dev=%x, flag=%x bc=%x",dev,flag,bc"); 

#endif 

There are occasional situations where a print[() can change 
peripheral timing enough to change the behavior in question, 
but these cases are fairly rare. 
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5. Use getchar() to stop kernel output and to set debug levels. 

Kernel getchar( ) is similar, though not quite the same, as the 
standard I/O library routine of the same name. Kernel 
getchar() returns a single character from the keyboard. The 
character is automatically echoed. The only other processing 
done on this character is to map RETURN to RETURN/LINE 
FEED on output. When you have many lines of kernel printf( ) 
output, inserting getchar() statements into your driver is one 
of the better ways to regulate the printf( ) output flow. 

A second use of getchar is to set the level of debugging. For 
example, in the example above, you could place two lines of 
code such as: 

mydebugflg = getchar()i 
mydebugflg -= 'O'i 

shortly after the beginning of the open routine, to set the current 
value of mydebugflg to anywhere between 0 and 9. 

Note that getchar() may not work at interrupt time for interrupt 
routines of certain priorities. 

6. Poll before you use interrupts. 

Often the hardest driver routine to get right is the interrupt routine. 
You can expedite this process by first writing a polled driver: one 
that busy-waits until the request you made has completed, and then 
returns status. However, do not leave any busy-wait loops in the 
finished driver! 

Polled drivers are best first approximations for block devices such 
as disks. For serial drivers, a polled interface may help you decide 
how to write to the device. However, be forewarned that perform­
ing polled reads will make the system unusably slow. 

7. Use spl{5,7} ( ) as a debugging aid. 

Sometimes, a driver can be difficult to debug because higher prior­
ity interrupts get in the way. A call to spI7() will shield you from 
any interruptions by the other devices on the system. 

8. Be patient. 
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Drivers are complex. So much so, that writing a 300-line device 
driver takes even an experienced driver-writer several times longer 
than a utility program of the same length. Don't worry if your 
driver takes a while to perfect. 

5.2.3 Vector Collision Considerations 

When designing a device driver to work with XENIX, care should be 
taken in the selection of the hardware interrupt vector. This is because of 
the possibility of conflict between device drivers over interrupt vector 
usage. 

8086-based XENIX systems use only one 8259 programmable interrupt 
controller. Of the 8 vectors available, only vector 2 (bus lead IRQ2) is 
not currently used. It is appropriate for devices whose drivers are written 
using spI5(). 

80286 and 80386-based XENIX systems use 2 8259 programmable inter­
rupt controllers. The mapped kernel currently leaves only vectors 9-12 
and 15 (bus leads IRQ9-12 and IRQI5) unused. These vectors are also 
safe to use for devices whose drivers are written using spI5(). 

If it is necessary to use one of the other vectors, there are two 
configuration alternatives: 

1. Replace the de"lice driver already using the vector. 

2. Provide a special-purpose interrupt handler that "knows" that the 
vector is shared and takes appropriate precautions. 

The first alternative is recommended, but is not always possible. There 
are problems with the second alternative, because there is no way to 
prevent the loss of interrupts which can occur when competing with an 
arbitrary device. 

The problem is that the 8259 interrupt controller detects an interrupt 
request only when the request line changes state from off to on (called 
edge-triggered mode). If all sources for the interrupt request line are not 
off at the same time after entry to the interrupt service routine, no further 
rising edge on the request signal is detected, and so no more interrupts are 
seen on that vector until all the sources for the interrupt request line are 
turned off. The state of the interrupt request line cannot be determined 
directly from the interrupt controller chip, so the determination must be 
made by device-specific means for all devices sharing the vector. 
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However, cohabitation is possible for those devices that interrupt only 
following a request from the CPU. Disk drivers, tape drivers, and other 
such devices can "time out", using the timeout( ) function, when waiting 
for a response to a request, and, upon time out, examine the device to 
determine if the operation is complete. This approach saves your driver 
from lost interrupts, but the device with which you share a vector is only 
immune if it is written using timeout( ) as well. 

This approach is far from practical for use with devices such as serial 
communication lines, which can cause interrupts at any time, out of the 
control of the system using the device. The granularity of control avail­
able with timeout( ) is far too slow for all but the slowest of communica­
tion lines (approximately 110 to 200 baud). 

This does not mean, however, that each serial line requires its own inter­
rupt vector. Some serial boards provide enough pollable state informa­
tion to allow the serial interrupt routine to loop until none of its con­
trolled devices is posting an interrupt. In this example, the key is that a 
single interrupt routine controls all of the multiple devices on a single 
vector. 

5.2.4 Note on ps 

If you change to an alternate name for your kernel, such as xenix.new, 
ps(C) does not work correctly unless you specify the -n flag and the path­
name of the XENIX kernel you are using. 

See ps(C) in the XENIX Reference for more information. 

5.3 Notes On Preparing a Driver for Binary Distribution 

5.3.1 Naming Guidelines 

The 2-4 letter name that prefixes all of your driver's routines should 
describe what kind of a driver it is, as best as is possible in such limited 
space. For example, the current serial I/O driver uses routines beginning 
with "sio", and the parallel driver uses routines beginning with "pa". 

Preconfigured drivers have had their names reserved in advance. If you 
are writing a driver for a device that a user might have more than one of, 
such as an add-on hard disk driver, you might want to be a bit more 
obscure to prevent later naming conflict. For example, the driver for a 
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TechnoBabble hard disk might begin its routines with the prefix "tbhd". 

5.3.2 Style Issues for User Prompting 

Most currently configured XENIX devices print out a short message in 
their initialization routines to notify the user that they are installed. This 
message must be terse. All the extra drivers that a user could possibly 
want, combined, should not generate enough messages to scroll the boot­
up copyright message off the screen. 

For example, this is an appropriate message: 
Device Address Vectordma Comment 

serialOx3f8-0x3FF 04 type=std ports=l 
Note that the labels (Device, Address, Vector, etc.) are provided at boot 
time; you need only supply a line with information specific to your driver. 

5.3.3 Shielding Against Configuration Changes 

Do not write a driver that relies on particular configuration parameters, 
for example a certain major device number or interrupt vector. Avoiding 
such "hardcoded" assumptions helps prevent collisions with other 
drivers, and insulates the driver from system configuration changes. 

Drivers should not, and do not need to be aware of their own major device 
number. In System V, a driver's major device number is no longer passed 
to it as a parameter. 

Very few drivers have ever needed to know this information, but those 
that did fell into two categories: drivers performing some form of physi­
cal I/O that used the major device number to determine the type of I/O, 
and block device drivers that needed to know if the device they controlled 
was the root or the swap device. 

Drivers doing physical I/O now differentiate it either by using the 
block/character parameter of the combined open routine, or by marking 
the transfer in the b_dev field of the transfer's buffer. Drivers needing to 
know if they are the root device can find out using the following or some­
thing similar: 
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#include <sys/conf> 

extern struct bdevsw bdevsw[]; 

if ( bdevsw [major (rootdev) ] . d open = = xxopen ) { 
printf ("the xx driver is the root device\n"); 

Drivers also should not and do not need to know the vector on which they 
interrupt. The underlying hardware determines the vectors on which a 
device is capable of interrupting. When the hardware is only capable of 
interrupting on one vector, there is little a driver writer can do beyond the 
timeout schemes discussed previously. If the vector is configurable on 
the card, some cards allow you to query the vector number directly. An 
unused vector has a vecintsw[] entry of novec. 

Preconfigured drivers can simply check to see if someone else has already 
claimed that vector. Other drivers should encourage users to reconfigure 
when interrupts appear to get lost. 

Using configurable port addresses poses similar issues. Like an advisory 
locking scheme, two drivers should usually be able to mitigate the port 
addresses and interrupt vectors between them, but a poorly written driver 
can cause problems for the whole system, sometimes making it look like 
some other driver is at fault. 

5.3.4 Preparing Drivers to Use custom 

The best thing you can do for the end user is to supply a driver installation 
shell script for use with custom(C). With such a script, a user has only to 
type custom and select options from the menus. 

The custom utility extracts the contents of your driver installation floppy, 
using them to control the custom installation procedure. custom requires 
the presence of the following: 

• On each floppy volume, a magic product identification file whose 
name is derived from the driver package name, the volume, and a 
machine identification string 

• The object module containing your device driver 

• A permlist, or a file containing the file permissions for the other 
files and what volumes and packages they belong to. 
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• The driver installation shell script that forms the table entries bind­
ing driver and kernel. 

All files on the driver installation floppy should be given by relative path­
name, starting at the root. For example, if Ibinlls were on the floppy, its 
name on the floppy should be ./binlls . 

The magic file has a name of the following form: 

./tmp/_lbl/prd=sidd/typ=286AT/rel=1.O.O/vol=Ol 

where sidd is the driver's prefix (in this case, it stands for Sample Install­
able Device Driver), and 286AT is a machine-type specifier. To find the 
type specifier for your machine check the file /ete/perms/inst on your sys­
tem. If you are developing for a different system, check the /ete/perms/inst 
file on that system for the type identi fier for that machine. 

In the above example, 1.0.0 is the software release number of the driver, 
and 01 is the volume number of the floppy containing the driver. Note 
that there is no volume 0: volume numbers must start at 01 and be con­
secutive. 

This file must exist on each volume of your driver installation set (incre­
menting the volume number). It can be an empty file; its contents are 
ignored. 

The permlist is a file containing a list of the files on the floppy, their per­
missions, and their packages. It will be used by custom both as an argu­
ment to fixperm(ADM) and to determine which driver files belong to 
which package. This makes it easy for the user to install one driver in 
a driver suite containing many. The perm list must live in ./tmp/perms. 
Below is a sample permlist: 
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# 
# Copyright (C) The Santa Cruz Operation, 1985. 
# This Module contains Proprietary Information of 
# The Santa Cruz Operation, Microsoft Corporation 
# and AT&T, and should be treated as Confidential. 
# 
#prd=sidd 
#typ=286AT 
#rel=1.0.0 
#set="Sample Installable Device Driver" 
# 
# User id's: 
# 
uid root 0 
# 
# Group id's: 
# 
gid root 0 
# 
# 
#!SIDD 11 Sample Installable Device Driver 
# 
# Fields are: package [d,f,x]mode, user/group, links, 
# path, volume 

SIDD F644 
srDD F755 
SrDD f644 

root/root 
root/root 
root/root 

1 
1 
1 

./tmp/perms/sidd 01 

./tmp/init.sidd 01 

./usr/sys/conf/sidd.o 01 

Some of the fields are self-explanatory and can be copied verbatim. The 
prd, typ, rel, and set fields are comments to fixperm but are meaningful to 
custom. They must agree with the prd, typ, and rei entries in the magic 
filename, above. The set field is used by custom when it prompts for the 
users choice of packages to install. 

Fields starting with '#!' are package specifiers. At least one must be 
present so that custom has something to prompt for. The '11' in the 
#!SIDD field above is the size, in 512 byte blocks, (as reported by du(C)) 
of all the files in the package. The comment following the size is also 
used in driver prompting. 

The final section contains the package specifier, file type and permission, 
ownership, link count, file name and volume for each file on the distribu­
tion. The file type is d for directory, x for executable file, and f for normal 
file. If the file type is capitalized, the file is optional, and custom will not 
complain if it is missing. The files section is explained in more detail in 
fixperm(ADM). 
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The driver installation shell script has the following duties: 

• Check to see if the link kit is present, and install it if it isn't. 

• Add the new driver entry points to the kernel using configure 

• Edit the name of the new driver into the shell script link_xenix 

• Run link xenix to link the kernel 

• Make the device nodes in Idev. 

• Run the shell script hdinstall, which backs up the old xenix, and 
puts your new xenix in its place. 

Here is a sample installation shell script for the aforementioned Sample 
Installable Device Driver. It must be extracted into /tmp, and have a 
name that starts with "init." 
4/: 
4/: 
4/: 
4/: 
4/: 
4/: 
4/: 

Copyright (C) The Santa Cruz Operation, 1985, 1986. 
This Module contains Proprietary Information of 
The Santa Cruz Operation, Microsoft Corporation 

Driver initialization script 

PATH=/bin:/usr/bin:/etc 

cd / 

4/: Get the permlist for the set containing the link kit package. 
4/: Link Kit Release 2.0 is found in the "base" set; link kit release 
4/: 2.1 and 2.2 is found in the "inst" set. 

if [ -f /etc/base.perms ]; then 
PERM=/etc/base.perms 

elif [ -f /etc/inst.perms ]; then 
PERM=/etc/inst.perms 

else 

fi 

echo "Cannot locate /etc/base.perms or /etc/inst.perms" >&2 
exit 1 

4/: test to see if link kit is installed 
until fixpenn -i -d LINK $PERM 
do case $? in 

4) echo "The Link Kit is not installed." >&2 , , 
5) echo "The Link Kit is only partially installed." >&2;; 
*) echo "Error testing for Link Kit. Exiting."; exit 1;; 
esac 
4/: Not fully installed. Do so here 
while echo "Do you wish to install it now? (y/n) \c" 
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do read ANSWER 
case $ANSWER in 

done 

Y I y) custom -0 -i LINK 
break 
ff 

NI n) echo "Drivers cannot be installed without the Link Kit. 
exit 1 
ff 

*) echo "Please answer 'y' or 'n'. \c" 

esac 
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echo "adding device entry points" 

cd /usr/sys/conf 

# if the 'sidd' driver is present in the ''master'' 
# file, "configure -j sidd" prints its major device 
# number and returns O. if the driver is not 
# present in ''master'', "configure -j sidd" prints 
# an error and returns 1 
# 
# configure -j NEXTMAJOR returns the smallest 
# available major device number. 
# 
# configure -m $major ... adds the given device 
# entry points to XENIX. 
# 
if major='configure -j sidd' 
then 

echo "Device entry points already configured" 
else 
major= 'configure -j NEXTMAJOR' 
configure -m $major -b -a siddopen siddclose siddstrategy siddtab I I { 

echo "Cannot add device entry points to XENIX" 
exit 1 

fi 

echo "adding sarrple driver to link line" 

grep -s sidd.o link xenix >/dev/null I I 
# add sidd.o to link line 
cp link xenix link xenix.OO I I 

echo "Cannot-copy link xenix" >&2 
exit 1 -

trap ''mv link xenix.OO link xenix; exit 1" 1 2 3 15 
sed "s !c.o!& sidd.o!" link_xenix.OO > link_xenix II { 

echo "Cannot edit link xenix" >&2 
mv link xenix.OO link xenix 
exit 1 

trap 1 2 3 15 
chmod 700 link xenix 

echo "\nRe-linking the kernel ... \c" 
if link xenix; then 

hCllnstall 
echo "\nlnstallable Device Driver installation corrplete.\n" 

else 

echo "\nLink failed, you will have to re-link the kernel\n" 
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fi 

# make sample device nodes 
/etc/rnknod /dev/siddOO b $major 0 
/etc/rnknod /dev/sidd01 b $major 1 

exit 0 
To summarize, the custom-installable driver installation floppy must con­
tain a permlist, a magic product identification file, the object module 
(extract into /usr/sys/conf), and the driver initialization script. Like all 
custom-installable floppies, a driver installation floppy is otherwise a 
normal tar volume. 

-rw-r--r--1 root 0 Dec 9 08:46 ./trnp/_lbl/prd=sidd/ 
typ=286F.IT/rel= 1.0.0/vol=01 
-rw-r--r--l root 669 Dec 10 20:15 ./trnp/perms/sidd 
-rw-r--r--l root 6157 Dec 10 18:59 ./usr/sys/confsidd.o 
-rwxrwxr-x1 root 2097 Dec 10 20:14 ./trnp/init.sidd 
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6.1 Memory Management Routines 

The first four routines in this section work with both 80286 and 80386 
systems. These are db alloc, db free, db read, and db write. The rest 
of this section describes the following -286-specific and 386-specific 
XENIX memory management routines: 

For 80')86 only: d~,crallocO, d~crfreeO, dscraddrO, IdtallocO, IdtfreeO, 
mmudescrO mmugetO, mmufreeO 

For 80386 only: IS3860, cvttoaddrO, cvttointO, mapphysO, unmapphysO, 
mapptovO, memgetO, sptallocO, sptfreeO 

286 and 386 Memory Management Routines 

Syntax: 

Description: 

Parameters: 

db alloc(tdbptr, reqs) 
struct devbuf **tdbptr; 
short reqs; 

The db allocO routine allocates memory that is phy­
sically contiguous. Contiguous memory is necessary 
for performing DMA transfers. Memory for all other 
uses should be allocated using standard memory allo­
cation routines for your machine. 

db _ allocO can be used to allocate up to 30 blocks of 
contiguous memory at one time. However, each block 
must be the same size, For each block, a devbuf 
structure must be defined. The parameters to 
db _ allocO are a pointer to an array of the devbuf 
structures (one structure per requested block), and a 
short integer indicating the number of requested 
blocks. 

The calling code must initialize two of the fields in 
the devbLifstructure: "size" and "ldbs." "ldbs" must 
be set to the value 9, and "size" should be set to the 
size of the requested block, in 512-byte units. 

The following example code fragment allocates 2 
buffers of 120K each: 

struct devbuf tb[2]; 

tb[O] .size = tb[l] .size = 240; 
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Warning: 

Syntax: 

/* 240 * 512 bytes = 120K bytes */ 
tb[O] .ldbs = tb[l] .ldbs = 9; 

if( db_alloc( &tb, 2 ) == 0 ) { 
printf( "Error: db_alloc() failed" ); 
return; 

This routine must not be used during the driver's ini­
tialization function. The memgetO function can be 
called to obtain contiguous memory during driver ini­
tialization for the 386. mmugetO is used to obtain 
contiguous memory at initialization time for the 286. 
Reading from and writing to memory areas allocated 
using db _ allocO must be performed using the 
db_readO and db_writeO functions only. 

db free( tdbptr, reqs ) 
struct devbuf **tdbptr; 
short reqs; 

Description: This routine releases memory areas allocated via the 
db allocO function. The arguments are the same as 
thOSe to db allocO. db freeO does not return any 
meaningful value. -

Example: 

Syntax: 

For example to free the memory allocated in the 
db _ allocO, you might use the following code: 

struct devbuf tb[2]; 

db_free ( &tb, 2 ); 

db write( dbptr, phys addr, count) 
struct devbuf *dbptr; -
paddr _ t phys _ addr; 
unsigned count; 

Description: This routine is used to transfer data from the physical 
address pointed to by phys_addr to the memory 
pointed to by dbptr. The amount transferred is 



Example: 

Syntax: 

Description: 

Example: 

Memory Management Routines 

"count" in bytes. This would most likely be used in 
the raw interface to a block device driver, so you 
would use the bp->p_paddr in the buf structure, with 
the count being bp->b_count. 

For example, to transfer from a buffer to a dbptr: 
struct buf -kbp; 
struct devbuf dp; 

db_write ( &dp, paddr( bp ), bp->b_count ); 

db read( dbptr, phys addr, count) 
struct devbuf *dbptr;-
paddr t phys addr; 
unsigned count; 

This routine is used to transfer data from the memory 
pointed to by dbptr to the physical address pointed to 
by phys_addr. The amount transferred is "count" in 
bytes. This could also be used in the raw interface of 
a block device driver, using bp->p_paddr in the buf 
structure as the phys_addr parameter, and bp­
>b_count as the count. 

For example, to transfer data from dbptr to a buffer: 
struct buf *bp; 
struct devbuf dp; 

db_read ( &dp, paddr( bp ), bp->b_count ); 

286-Specific Memory Management Routines 

The memory management routines in this section are specific to XENIX-
286. These routines access memory that is not within kernel data space 
(ie., to access memory-mapped devices). A descriptor from the Global 
Descriptor Table (GDT) can be initialized to map the memory area, and 
then used to access the memory. 

Syntax: unsigned short 
dscrallocO 

Description: The dscralloc routine allocates a descriptor from the 
pool of GDT descriptors available for drivers. It 
returns the 16-bit selector number of the allocated 
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Return: 

Warning: 

Syntax: 

descriptor. Note that this routine can be used only 
with XENIX-286. 

This routine returns 0 if no more descriptors are avail­
able, and prints the following message on the system 
console: 

Out of device descriptors, increase gdt size 
(NGDT) and relink XENIX 

Otherwise, the routine returns the 16-bit selector 
number of the allocated descriptor. 

It is important that the driver verifies that the return 
value is valid (not 0). Any attempt to use descriptor 0 
may cause the kernel to panic. 

dscrfree( sel) 
unsigned short sel; 

Description: The dscrfree routine returns a descriptor that is no 
longer needed to the pool of available device descrip­
tors. It takes as its only argument the selector number 
returned from a call to dscralloc. 

A device that uses a descriptor for most or all of its 
transfers should not release it, but should reuse the 
same descriptor for each transfer. Only devices that 
need a descriptor for a short period of time (during 
initialization, for example) should ever free a descrip­
tor. Note that this routine can be used only with 
XENIX-286. 

Parameters: The value of sel is an unsigned short value that 
specifies the selector number of the descriptor being 
freed. 

Syntax: paddr t 
dscraddr( sel) 
unsigned short sel; 
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Description: The dscraddr routine returns the physical address of 
the memory addressed by the selector that is provided 
as the argument. Note that this routine can be used 
only with XENIX-286. 

Parameters: The value of sel is an unsigned short value that 
specifies the selector number provided as the argu­
ment. 

Return: 

Syntax: 

The dscraddr routine returns addr, which is the 32-
bit physical address of the memory addressed by the 
selector. 

unsigned short ldtalloc (startsel, cnt) 
unsigned short startsel; 
int cnt; 

Description: The ldtalloc routine allocates free user mapping 
descriptors ensuring trat the last entry in the Local 
Descriptor Table (LDT) is always free. Note that this 
routine can be used only with XENIX-286. 

Parameters: If startsel = 0, Idtalloc returns the first free selector 
(or block of free descriptors if cnt > 1). If startsel != 
0, Idtalloc allocates the given selector (or block of 
selectors) if they are available for use. This function 
may only be used at task time. 

Return: Idtalloc returns MMUERR «unsigned) -1) on error; 
the number of the starting selector on success. 

Syntax: ldtfree(startsel,cnt) 
unsigned short startsel; 
int cnt; 

Description: The IdtfreeO routine frees user mapping descriptors 
that were previously allocated using IdtallocO. This 
function may only be called at task time. Note that 
this routine can be used only with XENIX-286. 
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Parameters: startsel is the selector to be freed (or the starting 
selector of a block of selectors if cnt > 1). ent is the 
number of sequential selectors to be freed (typically 
1). 

Syntax: mmudescr (sel, addr, limit, access) 
unsigned short sel; 
paddr t addr; 
unsigned short limit; 
char access; 

Description: The mmudescr routine initializes a descriptor to map 
an area of memory. 

Parameters: The value of sel is an unsigned short value that 
specifies the selector number of the descriptor allo­
cated by dscrallocO or IdtallocO. 

Example: 

The value of addr is a long value that specifies the 
address of the beginning of the memory area to be 
mapped. 

The value of limit is an unsigned short value that 
specifies the limit of the memory area (its size in 
bytes, minus 1). 

The value of access is an unsigned char value that 
specifies an access designation. The possible values 
of access are RO, RW, and DSA_DATA (as defined in 
/usr/sys/h/mmu.h and /usr/sys/h/relsym86.h). Here is a 
table of the possible values of access: 

Specifies read-only access. 
Specifies read/write access. 
Use for local driver selectors. 

Both RO and RW allow user access to the selectors, 
DSA_DATA should be used for selectors that are 
internal to the driver. 

The mmudescr routine maps a section of memory 
1024 bytes long at address OxBOOOO for reading and 
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writing as follows: 

mmudescr(sel, OxBOOOO, Ox3FF, RW); 

When writing to a device driver that uses a selector to map memory, fol­
low these steps: 

1. Use dscrallocO in the driver initialization routine (or on first open 
for this device) to reserve a descriptor for the driver's use. 

2. For each data transfer, use mmudescrO to set the descriptor to 
map the area of memory that the driver needs to access. 

As an example, the following code allocates a descriptor, then maps a 512 
byte area beginning at address OxBOOOO into the kernel's address space. 
Remember that the third argument is the limit of the transfer, not its size. 
Once the area has been mapped, the sotofarO macro may be used to con­
vert the segment-offset pair to a far address (faddr) which can then be 
used like any other kernel logical address. 

int seg; 
faddr _ t faddr; 

if ((seg = dscralloc()) == 0) 
{ 

/* error processing */ 
return; 

mrnudescr (seg, OxBOOOO, 511, RW); 
faddr = sotofar (seg, 0); 

Syntax: mloc_t mmuget(npage) 
msize_t npage; 

Description: The mmuget routine may be used to allocate memory 
from the system memory map. Memory is managed 
and allocated in units of "pages" (one page = 512 
bytes on an 80286). The base address returned by 
mmugetO may be used with mmudescrO to create a 
valid mapping, so that the memory can then be used 
by the driver. Note that this routine can be used only 
with XENIX-286. 
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Parameters: The argument npage is an unsigned integer which 
specifies the number of pages to allocate. The 
btomsO macro, defined in lusrlsyslhlsysmacros.h, is 
provided to perform the bytes-to-pages conversion. 

Return: 

Example: 

Syntax: 

mmugetO returns the page number of the first page in 
the allocated segment. This value may then be con­
verted to a physical address suitable for use with 
mmudescrO - by using the mltoaO macro. mmu­
getO returns MMUERR on failure. 

This code allocates nbytes bytes of memory, placing 
the segment of the allocated read in the variable seg. 
Note that all three variables defined are used again 
when the memory is freed with mmufreeO. 

int seg, nbytes; 
unsigned short base; 

#ifdef M_I286 
base = mmuget (btoms (nbytes) ) ; 
seg = dscralloc(); 
mmudescr(seg, mltoa(base), nbytes, RW) 

#endif 

mmufree(basepage, npage) 
mloc _ t basepage; 
msize _ t npage; 

Description: This routine deallocates memory previously allocated 
by mmugetO. Memory must be freed in "pages" - the 
same unit as in which it was allocated. Note that this 
routine can be used only with XENIX-286. 

Parameters: This routine takes the base value (or starting page), 
which is the unsigned integer returned from an mmu­
getO call, and the number of pages to free. 

Example: This code deallocates nbytes of memory, freeing the 
memory selector at the same time. The variables seg, 
nbytes, and base are taken from the previous mmu­
getO example. 
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int seg, nbytes; 
unsigned short base; 

#ifdef M I286 
mmufree (base, btoms (nbytes) ) ; 
dscrfree(seg); 

#endif 

386-Specific Memory Management Routines 

The following memory management routines are specific to XENIX-386: 

Syntax: IS3860; 

Description: This macro is defined in lusrlincludel sysluser.h. It is 
used to find out if the program that called the driver is 
a 386 binary. This is required in a driver's ioctl func­
tion that receives an address. Addresses passed to the 
driver from an 8086 or 80286 binary are in 
segment/offset format, and must be converted to an 
80386 virtual address using cvttoaddrO (see below). 
IS3860 provides a way to determine if address 
conversion is necessary. Note that this routine can be 
used only with XENIX-386. 

Example: The following code fragment demonstrates an ioctl 
function that uses IS3860: 

Syntax: 

Description: 

struct foo fip; 

xxioctl( dev, cmd, arg ) 
dev_t dev; 
int cmd; 
faddr_t *arg; 
{ 

if ( ! 1S386 () 
arg = (faddr _ t) cvttoaddr ( arg ); 
copyout( &fip, arg, sizeof( struct foo ) ); 

caddr t cvttoaddr (addr286) 
faddr'=-t addr286; 

The IS3860 macro can be used by the driver to deter­
mine whether the calling process is an 80386 binary, 
or an 8086/80286 binary. The cvttoaddr routine is 
used in iriver ioctl routines when dealing with 286 
binaries. The routine converts a segmented program's 
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far address into an 80386 virtual address that may be 
used in an 80386 driver, such as to pass to copyinO or 
copyoutO. The most common use for this conversion 
is to convert a segmented address passed to the driver 
though an ioctlO call. Addresses in the process's user 
structure are converted automatically by the kernel, 
so using cvttoaddrO is not necessary. Note that this 
routine can be used only with XENIX-386. 

Parameters: The addr286 argument is a 286 far pointer. 

Return: 

Syntax: 

The linear data address, as an offset from the begin­
ning of the user's data space, is returned. 

int cvttoint (addr286) 
faddr _ t addr286; 

Description: The cvttoint routine is a portable way to extract the 
low 16-bit word from a 32-bit word. 

Parameters: The addr286 argument is a 286 far pointer. 

Return: The low 16-bits of the 32 bit word are returned. 

Syntax: mapphys (physaddr, nbytes) 
char *physaddr; 
int nbytes; 

Description: The mapphys routine maps physical memory 
addresses to virtual memory addresses for use by the 
kernel. This is necessary to allow a device driver to 
access some physical area of memory address space, 
such as a memory-mapped device, or RAM or ROM 
at a particular physical address. The value returned 
by mapphys may be used like any other character 
pointer. The second argument to mapphys must be 
the length of the area to access. 

For example, to access 16K of video RAM on a eGA 
card which lies at physical address OxB8000, use the 
following statement: 
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char *ptr; 

ptr = (char *) mapphys( OxB8000, Ox4000 ); 

Note that this routine can be used only with XENIX-
386. 

Parameters: The argument physaddr is the physical memory 
address to map. 

The argument nbytes is the number of bytes to map, 
starting at physaddr. 

Return: The virtual address that maps to the physical address 
physaddr is returned. 

Syntax: void unmapphys (va, nbytes) 
char *va; 
int nbytes; 

Description: The unmapphys function takes the virtual address 
returned by mappbysO, and unmaps it. The virtual 
address is then free for later use. The size should be 
the same as the size used in the original call to map­
pbysO. Once unmappbys has been called, accessing 
the virtual address without remapping will cause a 
trap inside the kernel. This routine must be used on 
addresses obtained with mappbysO. 

For example, to unmap the pointer allocated by the 
mapphys example, use the statement: 

unmapphys( ptr, Ox4000 ); 

Note that this routine can be used only with XENIX-
386. 

Parameters: The argument va is the virtual address returned from a 
previous call to mappbysO. 

The argument nbytes is the number of bytes to free. 
This should be the same number of bytes that was 
allocated with mappbysO. 
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Syntax: mapptov (physaddr, vaddr, nbytes) 
char *physaddr; 
unsigned int vaddr; 
int nbytes; 

Description: The mapptov routine maps physical memory 
addresses to specific virtual addresses. 

Parameters: The argument physaddr is the physical memory 
address to map. 

Warning: 

Return: 

Syntax: 

Description: 

The argument vaddr is the virtual address to map. 

The argument nbytes is the number of bytes to map, 
starting at physaddr. 

This routine may only be called in the driver's initiali­
zation function. 

The virtual address that maps to physaddr is returned. 

pfn t 
memget ( clicks) 
pfn _ t clicks; 

The memget routine is used to obtain permanent, 
contiguous memory for the driver at initialization 
time. It is intended for memory that the driver will 
always have and use. Its argument is the size of 
memory in "clicks." Use the macro btocO to calcu­
late the number of clicks from the number of bytes 
required. memgetO' s return value is also in clicks, so 
the ctobO macro must be used to translate the return 
value of memgetO into a kernel virtual address. Both 
ctobO and btocO are defined in the file 
<sys/ sysmacros .h>. 

For example, to obtain a permanent 4K buffer for a 
driver, use the following code statement: 
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char *always; 

always = (char *) ctob( memget( btoc( Oxl000 ) ) ); 

Parameters: clicks is the number of clicks to allocate. 

Warning: This routine may only be called in the driver's initiali­
zation function. 

Return: The page frame number of the first frame of memory 
allocated is returned. 

Syntax: char* 
sptalloc (nbytes) 
unsigned int nbytes; 

Description: The sptalIocO routine is used to obtain temporary 
memory for use by device drivers when more than one 
page of kernel-addressable memory is needed. This 
memory is obtained from the system's virtual memory 
pool. Because the virtual memory management is not 
set up until after initialization, sptallocO must not be 
called during a driver's initialization function (use 
memgetO instead). When the driver is through with 
the memory, the memory should be released via 
sptfreeO. This routine returns a virtual address usable 
by any kernel or driver routine. 

For example, to allocate a temporary 4K buffer, use 
the following code statement: 

char *tmp; 

tmp = sptalloc( Oxl000 ); 

Parameters: The argument nbytes is the number of bytes of con­
tiguous kernel-addressable memory to allocate. 

Warning: Note that sptalIocO may not be called until after 
driver initialization. Also, because sptallocO may 
sleep, it should not be used at interrupt time. 
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Return: This routine returns the kernel virtual address of the 
memory allocated. 

Syntax: void sptfree (va, nbytes, freeftg) 
char *va; 
int freeftg; 

Description: The sptfreeO routine frees memory obtained from 
sptallocO. The arguments are the pointer returned by 
sptallocO, the size of the memory (same as passed to 
sptallocO) and a flag which denotes whether you want 
this freed memory to go back into the free page list. 
For drivers which use this to free memory obtained 
from sptallocO, the flag must always be 1. 

For example, to release the memory obtained by the 
sptallocO above, and free it completely, use the fol­
lowing statement: 

sptfree( va, nbytes, 1 ); 

Parameters: The argument va is the virtual address returned from a 
previous call to sptallocO. 

The value of nbytes is the number of bytes to free. 
This should be the same number of bytes that were 
allocated with sptallocO. 

The argument freeflg indicates whether to actually 
free the memory pages or not. If freeflg is not set, the 
memory pages are not freed. This is used when 
another process will continue to use the memory (for 
example, the u-area is allocated in this way). 
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7.1 Data Manipulation Routines 

This section describes routines that manipulate data and copy bytes to and 
from specific locations in the kernel and user space. 

For 286 and 386: copyioO, copyinO, copyoutO, bcopyO, 
fubyteO, fuwordO, subyteO, suwordO 

For 386 only: bzeroO, clrbufO 

Syntax: int copyio (ad dr, faddr, cnt, mapping) 
paddr t addr; 
faddr 1 faddr; 
unsigned cnt; 
int mapping; 

Description: The copyio routine copies bytes to and from a physi­
. cal address (buffer address) in the kernel to and from a 
far (32 bit) address (user data pointer). 

Parameters: The argument addr is a pointer to the physical kernel 
address to which or from which the data is to be 
transferred. 

The argument faddr is a 32-bit pointer that contains 
the offset of the user address to which or from which 
the data is to be transferred. 

The argument cnt is an unsigned integer that specifies 
the number of bytes of data to transfer. 

The value of mapping is an integer that designates the 
direction of the transfer. The following possible map­
ping values are defined in lusrlincludel sysluser.h: 

Value Definition 

U _ WUD Transfers from user data to kernel 
data (buffer) 
Transfers from kernel data 
(buffer) to user data 
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U _ WKD Transfers from kernel data to file 
(buffer) 

U_RKD Transfers from file (buffer) to ker­
nel data 

If successful, this routine performs the specified data 
transfer; otherwise, it returns -1. 

For 286 only 

The ioctl interface to a driver actually has two calling 
sequences: 

1) ioctl (fd, cmd, arg) 
int fd, cmd, arg; 

~ ioctl (fd, cmd, arg) 
int fd, cmd; 
char *arg; 

In the kernel, the ioctl interface is translated into the 
device-speci fic call shown in the following example: 

xxioctl (dev, cmd, arg) 
int dev, cmd; 
faddr_t arg; 

If arg is a pointer to a data structure, copy your data 
in and out using the copyio routine as shown in the 
following example: 

struct foo dst; 

. other ioctl code 

/* copy from arg to dst */ 
if ( copyio (ktop(&dst), arg, 

sizeof(struct foo), U_WUD) == -1 ) { 

u.u_error = EFAULT; 
return; 
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Note 

The <sys/param.h> and <sys/sysmaeros.h> files define several use­
ful macros for converting 286 addresses from one type to another. 
These macros include the macros in the following list: 

Macro 

ftoseg(x) 

ftooff(x) 

sotofar(seg,ofi) 

ptok(x) 

ktop(x) 

Syntax: 

Function 

Converts x from a faddr t to a 16-bit segment 
(selector) number. -

Converts x from afaddr _t to an offset. 

Converts a segment, offset pair into a faddr _t . 

Converts a physical address to a kernel logical 
address. 

Converts a kernel logical address to a physical 
address. 

bcopy (src, dst, cnt) 
char *src, *dst; 
int cnt; 

Description: The bcopy routine copies bytes in kernel space. 

Parameters: The argument sre is a pointer to the kernel address the 
data is transferred from. 

Syntax: 

The argument dst is a pointer to the kernel address the 
data is transferred to. 

The value of ent is the number of bytes to transfer. 

copyin (src, dst, cnt) 
faddr t src; 
char *dst; 
int cnt; 
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Description: The copyin routine copies bytes from the user's data 
space to the kernel's data space. 

Parameters: The argument sre is a 32-bit pointer that contains the 
offset of the user address the data is copied from. 
Often, sre is obtained from either u.u_base or the third 
argument passed to a driver's xxioctl() routine (arg). 

Return: 

Example: 

Syntax: 

The argument dst is a pointer to the kernel address 
(buffer address) that the data is transferred to. 

The argument ent specifies the number of bytes to 
transfer. 

If successful, this routine performs the specified data 
transfer; otherwise, it returns -1. 

Assuming arg is a pointer to a user data structure that 
was passed via xxioctl(), use copyinO to copy from 
user data space to kernel data space. 

xxioctl(dev, cmd, arg) 
int dev, cmd; 
faddr_t arg; 
{ 

struct foo dst; 

. other ioctl code 

/* copy from arg to dst */ 
if ( copyin(arg, &dst, sizeof(struct foo» == -1) 

{ 

u. u _error = EFAULT; 
return; 

copyout (src, dst, cnt) 
char *src; 
faddr t *dst; 
int cnt; 

Description: The copyout routine copies bytes from the 
kernel's data space to the user's data space. 
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Parameters: The argument sre is a pointer to the kernel 
address (in the buffer) that the data is transferred 
from. 

Return: 

Example: 

The argument dst is a 32-bit pointer that contains 
the offset of the user address the data is copied to. 

The argument ent specifies the number of bytes to 
transfer. 

If successful, this routine perfonns the specified 
data transfer; otherwise, it returns -1. 

Assuming arg is a pointer to a user data structure 
that was passed via xxioctlO, use copyoutO to 
copy from kernel data space to user data space. 
xxioctl (dev, cmd, arg) 
int dev, cmd; 
faddr_t arg; 
{ 

struct foo dst; 

. other ioctl code 

/* copy from dst to arg */ 
if ( copyout(&dst, arg, sizeof(struct foo)) == -1) 

{ 
u.u_error = EFAULT; 
return; 

386-Specific Data Manipulation Routines 

Syntax: bzero (p, cnt) 
char *p; 
int cnt; 

Description: The bzero routine sets memory locations to O. 

Parameters: The argument p specifies the beginning of the 
area to clear. 

The value of ent is the number of bytes to set to O. 
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Syntax: fubyte (src) 
faddr _ t src; 

Description: The fubyte routine retrieves (fetches) one charac­
ter from the user's data space. 

Parameters: The argument src is a 32-bit pointer that contains 
the offset of the user address the character is 
copied from. 

Return: 

Syntax: 

The value of the retrieved byte is returned. 

fuword (src) 
faddr _ t *src; 

Description: The fuword routine retrieves (fetches) one word 
from the user's data space. 

Parameters: The argument src is a 32-bit pointer that contains 
the offset of the user address the word is copied 
from. 

Return: 

Syntax: 

The value of the retrieved word is returned. 

subyte (addr, val) 
char *addr; 
int val; 

Description: The subyte routine sets one character in the user's 
data space. 

Parameters: The argument addr is a pointer to the byte to be 
set in the user's data space. 

The argument val is the value to be set. 



Syntax: suword (addr, val) 
char *addr; 
int val; 
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Description: The suword routine sets one word (four bytes) in 
the user's data space. 

Parameters: The argument addr is a pointer to the beginning 
of the four bytes to be set in the user's data space. 

The argument val is the value to be set. 
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8.1 DMA Routines 

The functions in this section interface to the Direct Memory Access 
(DMA) controller. Mter the discussion on using the DMA functions, 
there is a section on the syntax and purpose of each DMA function. 

8.1.1 Using the DMA Support Functions 

There are two possible methods of performing a DMA transfer in the 
XENIX kernel. The first method uses the queue of DMA requests main­
tained by the kernel. The second method is for the driver itself to allocate 
the DMA channel, start the transfer, check to see that the transfer was 
completed, then release the channel. This can be done in the task time 
portion of a driver. However, because this process can take a substantial 
amount of time (especially if there is a long wait for the DMA channel to 
become available), it is not suitable to do this at interrupt time. The first 
method is better suited for interrupt time, or for drivers that must share a 
DMA channel with other devices. This method allows a driver to submit 
a request to a queue of DMA requests maintained by the kernel, then con­
tinue with other processing. The kernel processes each request in tum. 

The steps required to perform a DMA transfer are as follows: 
dma allocO is called to allocate a DMA channel to the driver. Once the 
cha.ni1el has been allocated, the driver must set up the parameters of the 
transfer by calling dma yaramO with the appropriate parameters. After 
the parameters have been set, the driver begins the actual transfer by cal­
ling dma_enableO. After the transfer is complete, the function 
dma_residO may be called to find out the amount of data that was not 
transferred. A condition where data was not transmitted can be caused by 
a DMA request that crosses a segment boundary. Another DMA transfer 
must be initiated to complete the request. Once the transfer is completed, 
the driver must call dma relseO to release the channel for use by other 
drivers. -

The following function demonstrates the use of the DMA functions. It 
accepts a buffer and a byte count, and writes the data in the buffer to 
DMA channell: 

#define FREDS CHANNEL 1 

fred _ dma ( buf, count ) 
paddr _ t buf; 
long count; 
{ 

long leftover; 
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printf ( "Error: couldn't allocate DNA channel" ) 
else { 

dma.yaram(FREDS_CHANNEL, DMA:._Wnnode, buf, count); 
dma _enable () ; 

/* driver must now wait for the device to signal that */ 
/* the DMA request is complete. This can be done via * / 
/* an interrupt, or status register */ 

wait DMA(); 
/* driver function that waits for signal from device */ 

leftover = dma resid(); 
if ( leftover > OL ) 

printf ( "Error: DMA request not completed, 
%ld bytes untransferred\n", leftover ); 

dma _ relse ( FREDS _CHANNEL ); 

Using the kernel's DMA request queue requires a slightly different pro­
cedure than given above. To submit a request, the driver function calls 
dma_startO, passing to it a dmareq structure defining the DMA request. 
The driver's function must have initialized the structure with the follow­
ing information 

d_chan: channel to perform the request 
d_mode: direction of the transfer (read or write) 
d_addr: physical address from which or to which to transfer 
d_cnt: number of bytes to transfer 
d_proc: address of the function to do the transfer 
d_param: parameter to the function pointed to by d_proc 

The d_proc element should point to the function to be called by the kernel 
when it is time to service this particular request. This function will be 
called with the DMA channel already allocated, so it should call 
dmayaramO, dma_enableO, dma_residO if desired, and dma_relseO. 
The function should be as short as possible, since it may be called during 
another driver's interrupt function. When this service function is called, 
the kernel also passes to it a single argument, a pointer to the dmareq 
structure given by the call to dma_start. This pointer is then used to get 
the particulars of the DMA request. Note that the service function must 
call dma_relseO to release the DMA channel. 

The following two functions demonstrate how to queue and service a 
DMA request using the kernel's DMA queue: 

static long leftover; /* number of bytes not */ 
/* transferred in request */ 
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#define MY CHANNEL 1 

queue dma ( buf, count ) 
paddr := t buf; 
long count; 
{ 

struct dmareq dp; 
int service_dma(); 

/* set up DMA request structure */ 

dp . d _chan = MY_CHANNEL; 
dp.d_IDode = DMA_Wrmode; 
dp.d_addr = buf; 
dp.d cnt = count; 
dp.d=rroc = service_dma; 
dp. dyarams = "DMA request froID queue _ dma" ; 

/* Queue DMA request. If requests is completed */ 
/* immediately, then return, otherwise, sleep */ 
/* until service_dma says transfer is complete. */ 

if ( dma_start ( &dp ) ) 
return (0); 

else { 
/* go to sleep until transfer is completed */ 

sleep ( &leftover, PZERO+l ); 

if ( leftover > OL ) 
printf ( "Error: DMA not completed,"); 
printf ("%ld bytes not transferred\n", leftover); 

return (0) ; 

service _ dma ( dp ) 
struct dmareq *dp; 
{ 

printf ( "Now servicing %sO, dp->dyarams ); 

drnayaram( dp->d_chan, dp->d_mode, dp->d_addr, dp->d_cnt ); 
drna_enable ( dp->d_chan ); 

/* driver must now wait for the device to signal that */ 
/* the DMA request is complete. This can be done via */ 
/* an interrupt, or status register */ 

wait DMA(); 
/* driver function that waits for signal from device */ 

leftover = dma resid(); 
if ( leftover > OL ) 

printf( "Error: %s not completed, 
%ld bytes not transferredO, 
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dp->d yarams, leftover ); 
dma relse ( dp->d chan ); 
/* wake up sleeping requestor, if any */ 
wakeup( &leftover ); 
return(O); 

The functions in this section interface with the Direct Memory Access 
(DMA) controller. These are available for both the 286 and the 386. 
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Syntax: dma alloc (chan, mod) 
unsigned chan, mod; 

Description: The dma alloc function allows dynamic allocation of 
a DMA - channel. You should not use both 
dma_allocO and dma_startO at the same time. 

Parameters: The chan argument specifies the channel to be allo­
cated. 

The mod argument can have one of two values: 

DMA_BLOCK Waits until the channel is available. 

DMA_NBLOCK Returns immediately with a return stat 
o if the channel was not free at this tim 

If mod specifies blocking, the dma _ alloc function 
does not return until the requested channel is avail­
able. It sleeps until the channel is released and 
always returns non-zero. If mod specifies non­
blocking, the dma_alloc function immediately returns 
non-zero if the channel is available, and zero if it is 
not. The blocking option cannot be used at interrupt 
time, but the non-blocking option can be. 

This function should not be used in immediate con­
junction with dma_startO. Make certain that your 
DMA channel has been allocated before beginning 
your operations. An example of how to use this func­
tion is: 

/* allocate channell. */ 
/* If not currently available, wait */ 
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seterror ( EIO ); 
return; 

/* If channel is successfully allocated, */ 
/* then begin DMA streaming * / 

dma _start ( dma _request 
struct dmareq { 

struct dmareq *d_nxt; 
unsigned short d_ chan; 
unsigned short d mode; 
paddr_t d_addr; 
long d_cnt; 
int (*d-proc) (); 
char d-params; 

*dma_request; 

This function sets up the XENIX kernel to allocate the 
DMA channel for the driver. By filling in the d_chan 
field with the channel you want, the d_mode with the 
mode you want, and the d_proc with a pointer to the 
function to be called once the dma channel is allo­
cated, the driver can let the kernel handle the alloca­
tion of the DMA channel. 

When the channel is allocated, the function pointed to 
by d_proc will be called with a pointer to 
dma_request. At this point, the dma channel has been 
allocated as if the driver had done so with 
dma _ allocO. 

If the function was not able to allocate the channel 
immediately, but had to queue your request, this func­
tion will return a O. 

For example, allocating DMA channel 1 with modes 
of DMA_BLOCK, and we want foo_procO to be 
called when we have the channel allocated: 

/* set up dma structure */ 
extern int foo-proc(); 

struct dmareq foo_req = 

NULL, 
1, 
DMA Rdmode, 
(paddr_t) 0, 
OL, 
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Syntax: 

}; 

fooyroc, 
0, 

drna start ( &foo req ); 
/* we don't care if we are queued or not */ 
return; 

dma _start (arg) 
struct dmareq *arg; 

Description: The dma start function requests a DMA transfer to 
begin. Interrupt functions can use this facility. The 
fonnat of the dmareq structure is as follows: 

struct dmareq { 

} ; 

struct dmareq *<i_nxt; 

unsigned short d _chan; 
unsigned short d_ mode; 
paddr_t d_addr; 
long d_cnt; 
int (*<iyroc) (); 
char *<i yarams; 

/* specifies channel */ 
/* direction of transfer */ 
/* physical src or dst */ 
/* number of bytes or words */ 
/* address of function to call */ 
/* pointer to params for dyroc */ 

The dmareq structure contains enough infonnation to 
specify the transfer, the address of a function to call 
when the channel is available, and an address of 
further data that may be needed by the d yroc func­
tion. 

Parameters: The arg argument is a pointer to the dmareq struc­
ture that specifies the transfer that is required. 

Return: If the channel is available, it is marked as "busy," 
and arg->d yroc is called at spl6 with a pointer to 
arg as a parameter. The dma _start function then 
returns a non-zero value. 

If the channel is not available, the structure *arg is 
linked to the end of a list of pending requests, and 



Note: 

Syntax: 

Description: 
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dma_allocO simply returns O. 

The d yroc functions will be executed at spl6 and 
should observe all the normal rules of the MP inter­
rupt functions. Specifically, this means that no 
assumptions about the currently running process may 
be made. In addition, the interrupt priority level 
should not be lowered, and sleep, delay, or other 
functions that may cause sleep to be called cannot be 
used. 

dma relse (chan) 
short chan; 

The dma relse function releases a DMA channel pre­
viously allocated with dma_allocO or dma_startO. 
This function should be called during the interrupt 
signaling completion of the DMA transfer or as soon 
as completion is detected (if polling is being used). 
This function has no return value. If you intend to 
share DMA channels, you should use this function. 
Sharing DMA channels is highly recommended. 

If no dmareq structures are in the pending-request 
queue, dma _relseO releases the channel, wakes up 
any processes sleeping on the channel, and exits. 
Otherwise it performs the next request on the queue 
by calling the d yroc function with a pointer to the 
dmareq structure as a parameter. It is clear that 
because d yroc may be called during another driver's 
interrupt, it should be as minimal as possible to 
accomplish its task. 

Parameters: The argument chan is the DMA channel to be 
released. 

Example: To release the channel that was allocated in the previ-
0us allocation examples: 

/* finished with DMA for now, release channel * / 
dma_relse( 1 ); 
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The following DMA functions are to be used by d yroc functions or task 
time code after the dma _ alloc function has been used to successfully 
allocate a DMA channel: 

8-8 

Syntax: 

Description: 

dma param (chan, mode, addr, cnt) 
unsigned chan, mode; 
paddr_t addr; 
long cnt; 

This function will set up the controller chip for your 
DMA transfer. The dma _paramO function masks the 
DMA request line on the DMA controller, sets the 
address and count parameters, and sets the mode (read 
or write). This must always be used once the dma 
channel has been allocated for the driver by the func­
tions dma allocO or dma startO. In the case of the 
driver using dma_startO, 'this would be called by the 
function pointed to by d yroc. There is no return 
value. 

Parameters: The chan argument specifies the DMA channel to be 
used. 

Example: 

The mode argument specifies whether this is a read or 
write transfer. The options are: 

DMA_ WRMODE (Ox48). This option specifies a 
transfer from memory to a device. 

DMA_RDMODE (Ox44). This option specifies a 
transfer from a device to memory. 

For example, the function mentioned in the example 
for dma_start "foo_procO", might contain this code: 

foo _proc ( dp ) 
struct dmareq *dPi 
{ 

dma param(dp->d_chan, dp->d_ffiode, \ 
dp->d_addr, dp->d_cnt); 
dma_enable( dp->d_chan ); 
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Syntax: 

Description: 

The addr argument specifies the 
address where the data is copied 
from or to. 

The cnt argument specifies the 
number of bytes or words to 
transfer. 

dma enable (chan) 
unsigned chan; 

This function starts the DMA 
transfer set up by dma_paramO. 
There is no return value. This 
function clears the mask register 
on the controller to let the DMA 
transfer begin. 

Parameters: The chan argument specifies the 
DMA channel to be used. 

Syntax: long dma resid (chan) 
unsigned chan; 

Description: This function returns the number 
of bytes not transferred by the 
DMA request as a long integer. 

Parameters: The chan argument specifies the 
DMA channel to be queried. 

Return: The dma resid function returns 
the number of bytes that were not 
transferred. 
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9.1 Kernel-Support Routines 

This chapter describes the routines (interfaces) that the kernel provides to 
facilitate developing device-drivers. With sea XENIX System V, each 
device driver can call only the routines described in this chapter. For 
more information on calling functions, see the C Language Reference. 

In XENIX-286, device drivers must be compiled as medium model pro­
grams. This is taken care of automatically by the C compiler when you 
use the -Mm option to specify that the driver is to be compiled using the 
Medium size memory model. 

9.1.1 Input/Output Routines 

This section describes the routines that allow access to device registers in 
I/O space. 

For 286 and 386: inbO, outbO, 

For 286 only: inO, outO 

For 386 only: inwO, indO, outwO, outdO, repinsbO, repinsdO, 
repinswO, repoutsbO, repoutsdO, repoutswO 

Note that the various out and rep instructions do not return specific 
values. Do not attempt to use their return values as a means of error 
checking as these values are not consistent from release to release. 

The following two routines, inbO and outbO, provide a portable interface 
to the i/o space addresses on your device controller or adapter, These two 
routines can be used with both XENIX-286 and XENIX-386. 

Syntax: int inb (read addr) 
int read addr 

Description: The inb routine reads a byte from the I/O address 
specified by the parameter read_addr. This routine is 
available on both XENIX-286 and XENIX-386. 

Parameters: The value of read addr is an integer that specifies the 
physical I/O address that is to be read. 
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Return: 

Example: 

Syntax: 

The value of the byte located at the physical I/O 
address specified by read_addr is returned. inb 
returns an integer whose high byte or bytes have been 
cleared. Only the low byte is meaningful. 

To read a byte register at I/O address Ox300 you could 
use the following lines of code: 

char val; 
val = (char) inb(Ox300); 

outb (write addr, value) 
int write _ addr; 
char value; 

Description: The outb routine writes the byte specified by 'value to 
the physical I/O address specified by write _ addr. 
This routine is available on both XENIX-286 and 
XENIX-386. 

Parameters: write _addr is an integer that specifies the physical I/O 
address that will be written to. 

Example: 

value is the byte that will be written to the physical 
I/O address write _ addr. 

To write the 8-bit value Oxf to a byte register at I/O 
address Ox300 you could use the following line of 
code: 

outb(Ox300, Oxf); 



Kernel Support Routines 

286-Specific Routines 

The following I/O routines are specific to XENIX-286: 

Syntax: in (read addr) 
int read=addr; 

Description: The in function reads a 16-bit word from the physical 
I/O address specified by read_addr. This routine is 
only available on XENIX-286. 

Parameters: read addr is an integer that specifies the physical I/O 
address being read from. 

Return: 

Example: 

Syntax: 

The value of the 16 bit word at the I/O address 
specified by read _ addr is returned. 

To read the status of a word register at I/O address 
Ox20, use the following lines of code: 

int val; 
val = in(Ox20); 

out(write addr, value) 
int writeyddr, value; 

Description: The out function writes the 16-bit integer specified by 
value to the physical I/O address specified by 
write _ addr. This routine is only available on 
XENIX-286. 

Parameters: write _ addr is the physical I/O address being written 
to. value is the 16-bit integer that will be written. 

Example: To write the 16-bit value OxfiO to I/O address Ox300 
you could use the following line of code: 

out (Ox300, OxffO); 
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386-Specific Routines 

The following I/O routines are specific to XENIX-386: 
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Syntax: int inw (read addr) 
int read _ addr; 

Description: The inw function reads a 16-bit word from the physi­
cal I/O address specified by read_addr. This routine 
is only available on XENIX-386. 

Parameters: read addr is an integer that specifies the physical I/O 
address to be read from. 

Return: 

Example: 

Syntax: 

A 32-bit integer whose high 2 bytes are set to zero is 
returned. 

To read a 16-bit register at I/O address Ox300 you 
could use the following lines of code: 

short int val; 
val = (short int) inw(Ox300); 

int ind (read addr) 
int read_addr; 

Description: The ind function reads a 32-bit word from the physi­
cal I/O address specified by read_addr. This routine 
is only available on XENIX-386. 

Parameters: The value of read _ addr is an integer that specifies the 
physical I/O address to be read from. 

Return: 

Example: 

ind returns the 32-bit value read from the I/O address 
read add,.. 

To read a 32-bit value from I/O address Ox300 you 
could use the following code: 

int val; 
val = ind(Ox300); 



Syntax: outw (write addr, value) 
int write_addr, val~e; 
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Description: outw writes a 16-bit word to the physical I/O address 
specified by write_addr. This routine is only avail­
able on XENIX-386. 

Parameters: write _ addr is the physical I/O address being written 
to. I'alue is the 16-bit word bring written to 
write addr. 

Example: 

Syntax: 

To write a the 16-bit value OxfiD to I/O address Ox300 
you could use the following code: 

out w ( 0 x 3 0 0 , 0 :.: f f 0) ; 

outd (write ad dr, value) 
int write _ addr, value; 

Description: outd writes a 32-bit value to the physical I/O address 
specified by write _ addr. This routine is only avail­
able on XENIX-386. 

Parameters: write _ addr is the physical I/O address being written 
to. value is the 32-bit word being written to 
write addr. 

Example: 

Syntax: 

To write the 32-bit value OxffffDO to I/O address Ox300 
you could use the following code: 

outd(O:dOO, OxffffOO); 

repinsb (dev addr, kv addr, cnt) 
int dey addr~ cnt; -
caddr J kv _ addr; 

repinsw (dev addr, kv addr, cnt) 
int dey addr ~ cnt; -
caddr J- kv _ addr; 

repinsd (dev_addr, kv_addr, cnt) 
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int dev addr, cnt; 
caddr _ t kv _ addr; 

Description: The repin functions are used to read streams of data 
from an i/o port on a device to an array of size ent 
whose base begins at the kernel virtual address 
specified by h,. addr. These functions are typically 
used for reading from disk and SCSI devices. These 
functions assume that the virtual address specified is a 
valid kernel address currently in RAM. These rou­
tines is only available on XENIX-386. 

repinsb reads a stream of bytes from an I/O address 
to a kernel virtual address. 

repinsw reads a stream of 16-bit words from an I/O 
address to a kernel virtual address. 

repinsd reads a stream of 32-bit words from an I/O 
address to a kernel virtual address. 

Parameters: de)' add,. is the physical I/O address where reading 
begins. 

A.T add,. is the kernel virtual address where the data 
will be stored. It must be the base address of an array 
large enough to hold ent items. 

The ent parameter is one of the following values: 

The number of bytes to be read by repinsbO 

The number of 16-bit words to be read by repinswO 

The number of 32-bit words to be read by repinsdO 

Examples: The following three examples demonstrate how to use 
the repin functions. In each case the variable 
del'_add,. would need to be assigned an appropriate 
value (I/O address) before being used as a parameter. 
In these examples kv _addr specifies an array of 
memory declared locally by the device driver but it 
could be any kernel virtual address. 



Syntax: 
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/* repinsb */ 
char kv_addr[50]; 
repinsb(dev_addr, (caddr_t) kv_addr, 50); 

/* repinsw */ 
short int kv_addr[50]; 
repinsw(dev_addr, (caddr_t) kv_addr, 50); 

/* repinsd */ 
int kv_addr[50]; 
repinsd(dev_addr, (caddr_t) kv_addr, 50); 

repoutsb (dev addr, kv addr, cnt) 
int dey addr, -cnt; -
caddr _ t kv _ addr; 

repoutsw (dev _ addr, kv _ addr, cnt) 
int dey ad dr, cnt; 
caddr _ t kv _ addr; 

repoutsd (dev addr, kv ad dr, cnt) 
int dey addr, cnt; -
caddr _ t kv _ addr; 

Description: The repout functions are used to write streams of 
data to an i/o port on a device from an array of size 
ent whose base begins at the kernel virtual address 
specified by kv addr. These functions are typically 
used for writing to disk and SCSI devices. These 
functions assume that the virtual address specified is a 
valid kernel address currently in RAM. These rou­
tines are only available on XENIX-386. 

Parameters: 

repoutsb writes a stream of bytes to an I/O address 
from a kernel virtual address. 

repoutsw writes a stream of 16-bit words to an I/O 
address from a kernel virtual address. 

repoutsd writes a stream of 32-bit words to an I/O 
address from a kernel virtual address. 

dev _ addr is the physical I/O address where writing 
begins. 

kv addr is the kernel virtual address where the data is 
stored. It must be the base address of an array of size 
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ent items. 

The ent parameter is one of the following values: 

• the number of bytes to be written for 
repoutsbO 

• the number of 16-bit words to be written for 
repoutswO 

• the number of 32-bit words to be written for 
repoutsdO 

Exa'ii]dclollowing three examples demonstrate how to use the repout 
functions. In each case the variable dev addr would need to be assigned 
an appropriate value (I/O address) before being used as a parameter. In 
these examples kv _addr specifies an array of memory declared locally by 
the device driver, but note that kv _addr can be any kernel virtual address. 

/* repoutsb */ 
char kv_addr[50]; 
repoutsb(dev_addr, (caddr_t) kv_addr, 50); 

/* repoutsw */ 
short int kv_addr[50]; 
repoutsw(dev_addr, (caddr_t) kv_addr, 50); 

/* repoutsd */ 
int kv_addr[50]; 
repoutsd(dev_addr, (caddr_t) kv_addr, 50); 

9.1.2 Interrupt Support Routines 

This section describes the routines used to enable and disable interrupts 
during task-time processing. These routines alter the system priority 
level (spl) and should be used only to protect critical sections of your 
code. They can also be used to guarantee uninterrupted execution of dev­
ice driver code. However extreme care should be taken to avoid spending 
long periods of time (hundreds of microseconds) above spl 5 as this will 
cause the software clock to lose time and will reduce performance. 
Please note that the the functions spll 0, spI2(), sp13(), spl4() , and spl6() 
are also provided, although they are not used by the XENIX kernel to pro­
tect specific data structures. Their use is left to the discretion of the dev­
ice driver writer. All the spl functions except for splxO return the previ­
ousspl. 

splcliO, splxO, splOO, sp150, spl70 
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int oldspl; 
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Description: The splx routine sets the system priority level to the 
level specified by oldspl, oldspl should have been set 
to the return value of a previous call to one of the 
other spl functions such as: spIciiO , splSO , spl60 , 
or sp170. Calls to anyone of these routines and the 
splx routine nest correctly. 

Parameters: The integer oldspl specifies a previous spl level, it 
should only be set by the return value of a previous 
spl function. 

Example: See the example following the discussion of splcliO. 

Syntax: int spIcii 0 

Description: This routine sets the equivalent of spl 5, it should be 
used instead of the spl50 routine for compatibility. It 
should be used to protect critical sections of code 
which manipulate dist structures or pointers. It is 
possible that a device driver's xxpoll function will 
preempt another driver while it is manipulating dists. 
If your xxpoll function manipulates dist structures 
you should exercise care to make sure that your func­
tion was not entered at an spl level higher than 5. 
Otherwise you may corrupt the kernel free dist. You 
should not manipulate dists in your xxintr function. 

Return: The previous spl value is returned. This value may be 
used to restore interrupts with the splx routine. 

Note: It is not necessary to use sp1cliO before calling any of 
the cblock or dist functions supplied with XENIX 
(getcbO, getcfO, putcbO, etc) because these functions 
will raise the system priority level before entering 
their critical sections and then restore it to its previ-
0us value before they return. It is only necessary for 
you to use sp1cliO if you are directly manipulating 
fields in a dist structure or the freelist. You should 
only do this if you have extensive experience with 
character device drivers. 
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Example: Here are some code fragments which show how to 
check spl level in an xxpoll function and to demon­
strate the use of spkliO in a task time function. 

/* 
* This macro tells us if the previous spl level was "lev" 
* or higher. PS PRIMASK is defined in <sys/param.h>. 
*/ 

#ifdef M I386 
#define ATSPL(lev,ps) ((ps) >= lev) 
#else 
#define ATSPL(lev,ps) (((ps&PS_PRIMASK»>8) >= lev) 
#endif 

xxpoll (ps) 
{ 

/* 
* If we were at splS or higher before the clock tick, leave! 
*/ 

/* 

if (ATSPL (S,ps)) 
return; 

** end xxpoll fragment. 
*/ 
/* 
* xxread(), xxwrite(), xxopen(), xxclose, and xxioctl() are all examplE 
* of task time functions. 
*/ 

xxread(dev) 
int dev; 

/* 

int oldspl; 

/* set new spl and save old level in oldspl */ 
oldspl = splcli(); 

. /* perform clist operations */ 

/* restore saved spl */ 
splx(oldspl); 

** end task time fragment. 
*/ 
} 
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Syntax: int splOO 

Description: The splO functions sets the lowest spl possible. It is 
used to assure that no device interrupts are being 
blocked. 

Return: The previous spl value is returned. It may be saved 
and used to restore the spl level by a subsequent call 
to splxO. 

Syntax: int splS 0 

Description: The splS routine typically masks all interrupts except 
for those from the clock and serial devices. This rou­
tine is provided for backward compatibility, so if you 
are writing a serial device driver, you should use 
splcliO whenever possible. 

Return: The previous splvalue is returned. It may be saved 
and used to restore the spl level by a subsequent call 
to splxO. 

Syntax: int spl6 () 

Description: The spl6 routine typically masks all interrupts except 
for those from the serial device. In general there is no 
good reason for setting an spl of 6, it should only be 
done in extreme circumstances where it is necessary 
to assure that a given section of code will execute 
without being pre-empted. Typically this is only 
necessary where some semblance of real time 
response is necessary. 

Note: 

Return: 

Use of this function causes the software clock to lose 
time and prevents other device drivers xxpoll routines 
from being called. This may have an unpredictable 
effect on the behavior of other device drivers that 
require periodic execution of their xxpoll routines. 

The previous spl value is returned. It may be saved 
and used to restore the spl level by a subsequent call 

9-11 



Device Driver Writer's Guide 

to splxO. 

Syntax: int spl7 0 

Description: The spl7 routine disables all interrupts. Use this rou­
tine only for extremely short periods when updating 
critical data structures that could be accessed by a 
high priority device. 

Note: 

Return: 

This function causes the software clock to lose time 
and prevents other device drivers xxpoll routines from 
being called. This may have an unpredictable effect 
on the behavior of other device drivers that require 
periodic execution of their xxpoll routines. In addi­
tion, since this priority level blocks all interrupts, 
characters will not be echoed back to the console, and 
the capslock, numlock, and scrolllock indicators will 
not work. Additionally, it is not possible to switch 
multi-screens while a driver is at spl 7. If for some 
reason your device driver becomes hung at spl 7 the 
system will be frozen and your only option will be to 
power cycle the machine. 

The previous spi value is returned. It may be saved 
and used to restore the spl level by a subsequent call 
to splxO. 

9.1.3 Timing and Synchronization Functions 

This section describes the functions sleepO, and wakeupO, which may be 
used to suspend driver execution until a shared resource becomes avail­
able, and the functions timeoutO, and delayO, which may be used to tem­
porarily halt task time processing in a driver or schedule the execution of 
a function at a specified time in the future. These functions change the 
spl to zero and cause a context switch to occur. They should never be 
used in driver interrupt handling code. After a sleep has been awakened 
or a timeout or delay has expired, control will return to the driver's task 
time function. All of these functions return the system to the priority 
level that was in effect before they were executed. 

The timeoutO and delayO functions use a constant size data structure. If 
this data structure overflows, the error: 
panic: timeout table overflow 
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/* repoutsb * / 
char kv_addr[50]; 
repoutsb(dev_addr, (caddr_t) kv_addr, 50); 

/* repoutsw * / 
short int kv_addr[50]; 
repoutsw(dev_addr, (caddr_t) kv_addr, 50); 

/* repoutsd * / 
int kv_addr[50]; 
repoutsd(dev_addr, (caddr_t) kv_addr, 50); 

occurs. If this happens, it is necessary to reconfigure the kernel and 
increase the value of the NCALLS parameter. 

The following functions are described: sleepO, wakeupO, timeoutO, 
delayO 

Syntax: sleep (wait_channel, priority) 
caddr t wait channel; 
int priOrity; -

Description: sleep suspends task time processing in a driver. Its 
behavior and functionality is not at all like that of the 
sleep(S) system call. For a temporary halt in the exe­
cution of your driver use the delayO routine. sleep 
should be used when it is necessary for the driver to 
wait until a resource is available or an i/o request has 
completed before continuing task time execution. It 
is not guaranteed that when sleepO returns, the event 
or resource that the driver has been waiting for will 
have occurred. This routine should never be called at 
interrupt time. 

Parameters: wait channel is a number the system uses for identi­
fying the sleeping process in the process table. This 
number should be chosen so that it is unique to those 
processes put to sleep by your driver. A good method 
for deriving a unique number is to use the address of a 
global variable that has been declared in your driver. 
During debugging it is useful for the device driver 
writer to display (see Miscellaneous Support Rou­
tines) this number, since it is possible to use the shell 
command "ps -el" to identify which processes are 
sleeping in your driver by examining the values 
reported in the WCHAN column. 
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Return: 

Note: 

Syntax: 
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priori(v detern1ines the priority of the process when it 
awakens. This value is used by the scheduler to deter­
mine execution order in the run queue. A lower prior­
ity will place the process nearer the top of the run 
queue. In addition the value of priority is also used to 
determine whether the sleeping process can be inter­
rupted by a software signal. If priority is less than 
PZERO (include <sys/param.h» then the sleeping 
process cannot be interrupted by a software signal. A 
process should only sleep at a priority less than 
PZERO if it is guaranteed that the event it is waiting 
for will occur within a short time. In general 
processes should sleep at priorities greater than 
PZERO so that users will be able to force termination 
of their processes by a software signal if an error has 
occurred. 

sleepO returns 0 if a wakeupO function has been 
called using the same waicchannei that was specified 
in the sleepO call, or it returns 1 if the priority used 
has been or'd with PCATCH (include <sys/param.h» 
and the sleeping process has been sent a software sig­
nal. 

If priority has not been or'd with PCATCH and the 
sleeping process is interrupted by a software signal, 
sleepO will not return control to the device driver. 
Instead sleep will longjrnpO back to the process state 
just after the system call was made. The system call 
invoked by the user process will return -1 and ermo 
will be set to EINTR. If the device driver has set flags 
or temporarily allocated memory that should be 
cleared or freed if the sleepO is interruptyd, it is 
necessary that PCATCH be or'd into priority. This 
will cause control to return to the driver on a software 
interrupt. The driver should then restore any tem­
porary resources it was using, set u.u_error to EINTR, 
and return( -1). See the example following the discus­
sion of the wakeupO function for more information. 

wakeup (wait channel) 
caddr _ t wait_channel; 
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Description: wakeup causes all processes which are sleeping at a 
wait channel equal to wait_channel to be taken off the 
sleep queue and placed on the run queue. When a 
process is awakened, the call to sleepO returns a 
value of zero. It is still necessary to see whether the 
event being slept on has occurred, as there is no 
guarantee that the resource being waited for is actu­
ally free. 

Parameters: wait channel should be the same value used in a pre­
vious invocation of the sleepO function. Since this 
number is not guaranteed to be unique and multiple 
processes may have have been awakened by any sin­
gle invocation of the wakeupO function it is not 
guaranteed that the event being waited for has in fact 
occurred. 

Return: wakeup does not return a useful value. 

Example: The following code fragments demonstrate one possi­
ble use of sleepO and wakeupO. In this instance the 
driver xxread() function allocates a temporary storage 
area, queues an I/O transfer, and then puts the process 
to sleep. The xxintr() function is called when the dev­
ice is ready to do the transfer. After the transfer is 
complete the xxintr() function executes a wakeup(). 

* declare variable which is used for wait channel 
*/ 

char my_wait_channel; 

/* 
* First the xxread() . 
*/ 

xxread(dev) 
int dev; 
{ 

#define MYPRI PZERO+15 /* PZERO is defined in <sys/param.h> */ 

/* allocate temporary storage */ 

/* set flag to indicate I/O transfer is in progress */ 

/* start I/O transfer */ 

/* 
* flag will only indicate transfer is done if wakeup () has 
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/* 

* been called by my xxintrO. 
*/ 

while (/* flag indicates transfer is not done */) { 
/* or MYPRI with PCATCH because I need to clean things up */ 
if (sleep (&my wait channel, MYPRI I PCATCH) == 1) { 

/* stop-I/O transfer * / 
/* clear I/O transfer flag */ 
/* free temporary memory */ 
u.u error = EINTR; 
return (-1) ; 
} 

} /* only get past here when transfer is done */ 
/* copy data from temporary storage to user address */ 

/* free temporary memory */ 
return ( /* number of bytes transferred */ ); 

* now for the xxintr() 
*/ 

xxintr(interrupt) 
int interrupt; 

} 

/* 

/* check that transfer is complete */ 

/* set flag to indicate transfer is complete */ 

/* wakeup sleeping process */ 
wakeup(&my_wait_channel); 

* Note that the preceding example does not take into 
* account the possibility that multiple user processes 
* may have queued requests for a single device. 
*/ 
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/* repoutsb *'/ 
char kv_addr[50J; 
repoutsb (dev _ addr , (caddr _ t) kv _ addr, 50); 

/* repoutsw */ 
short int kv_addr [50J ; 
repoutsw (dev _ addr, (caddr _ t) kv _ addr, 50); 

1* repoutsd *1 
int kv_addr[50J; 
repoutsd(dev_addr, (caddr_t) kv_addr, 50); 
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Syntax: timeout (function, arg, clock ticks) 
int (*function) 0; -
caddr t arg; 
int clock_ticks; 

Description: timeout schedules a function to be executed at a 
specific time in the future. 

Parameters: junction is the label for the function to be executed 
after the specified number of clock _ticks has elapsed. 

arg is passed as a parameter tojunction. 

clock ticks is the number of clock ticks to wait before 
calling junction. On most 286 or 386 machines a 
clock tick occurs 50 times per second (50Hz). 

Note: timeoutO should nonnally only be used at task time, 
however it can be used in an xxinit() function with the 
following warning: Since the clock interrupts may 
not be enabled before your xxillit() function is called, 
the timeout may not elapse when specified, but will 
elapse no later than (time_ when_clock_started + 
clock_ticks) times one fiftieth of a second. 

Example: timeoutO, sleepO and wakeupO can be combined to 
provide a "busy, wait" function. The following code 
sample illustrates this possible functionality: 

#define PERIOD 5 /* 5/50 equals 1/10 second */ 
#define BUSYPRI (PZERO -1) /* arbitrary */ 

/* Declare function I will use in timeout(). */ 
int stopwait () ; 

/* flag which is used to indicate */ 
/* whether to continue waiting. */ 
int status; 

int busywait () i'" wait until status is non-zero */ 
{ 

while (status = = 0) { 
tiw~out(stopwait, (caddr_t) &status, PERIOD); 
sleep (&status, BUSYPRI); 

int stopwait(arg) 
caddr t arg; 
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Note 

if ( /* what I am waiting for has happened */ 
status = 1; 

else 
wakeup (arg); 

A device driver should never loop while waiting for a status change 
unless the delay is less than 100 microseconds. Also, setting a 
timeout for fewer than three clock ticks may result in the sleepO 
call happening after the timeout has occurred. This results in a per­
manent sleep condition (hang). 
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Syntax: delay (ticks) 
int ticks; 

Description: The delay routine uses sIeepO and wakeupO calls to 
delay the current process for the specified number of 
clock ticks. Its functionality is similiar to that of the 
sleep() system service except that time is measured in 
fiftieths of a second. This function should not be used 
at interrupt time. 

Parameters: ticks is an integer that specifies the number of clock 
ticks to delay. One clock tick equals Ij50th of a 
second. 

Return: 

Warning: 

After the specified time, the delayed function resumes 
running. No value is returned. 

The delay routine should not be called at device­
initialization Unit) time as the amount of time 
delayed will not be what is expected. 
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9.1.4 Process Control Functions 

setjmpO, 10ngjmpO, psignalO, signalO 

Syntax: 

Note: 

Description: 

setjmp (u.u qsav) 
label_t u.u_qsav; 

Typically, the device driver writer should never 
invoke setjmpO as it will interfere with the Operating 
System's ability to recover from an interrupted system 
call. The kernel always executes a setjmp(u.u_qsav) 
after the switch to system mode after a call sys in the 
user process. Typically it is only used if a sleepO is 
interrupted by a software signal and PCATCH was not 
set. In this case sleepO executes a 
longjmp(u.u _ qsav) back to the system call interface. 

setjmp saves a stack environment that can subse­
quently be restored using longjmpO. Used together 
this way, the setjmp and longjmp routines provide a 
way to execute a nonlocal goto. This routine has the 
same functionality as setjmp(S). 

A call to setjmp(u.u _ qsav) causes the current stack 
environment to be saved in u.u qsav. A subsequent 
call to longjmp(u.u qsav) restores the saved environ­
ment and returns control to the point just after the 
corresponding setjmp call. The values of all vari­
ables accessible to the routine receiving control con­
tain the values they had when longjrnp was called. 

Parameters: The u.u _qsav structure saves the current context. 

Return: 

Syntax: 

The setjmp routine returns 0 after saving the stack 
environment. If setjrnp returns as a result of a 
longjmp call, it returns 1. There is no error return. 

longjmp (u.u qsav) 
label_ t u.u _ qsav; 

Description: The longjrnp routine restores the process context that 
was previously saved using setjmpO. This routine 
has the same functionality as longjmp(S). 
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Parameters: u.u qsav contains the information saved by the previ­
ous-setjmpO. This is the only argument that should 
ever be passed to longjmpO. 

Syntax: psignal (proc _ptr, sig) 
register struct proc *proc ptr; 
register int sig; -

Description: psignal sends the specified signal sig ( see 
<sys/signal.h> ) to the process specified by proc ytr. 

Parameters: proc ytr is a pointer to the process to which the signal 
is sent. At task time it is u.u_procp ( see <sys/user.h> 
). If you want to be able to kill a process at interrupt 
time you need to store u.u_procp in a global variable. 

sig is the number of the signal to be sent. For more 
information about possible signals, see the 
<sys/ signal.h> header file. 

Syntax: signal (pgrp, signum) 
int pgrp; 
int signum; 

Description: The signal routine sends the specified signal, signum, to all 
processes in the process group identified by pgrp. 

Parameters: pgrp is an integer that specifies the process group number. 
At task time it is one of the two equivalent integers u.u yrocp->p ygrp or 
u.u_ttyp->tygrp. If you wished to be able to terminate a process group at 
interrupt time you would need to store the pgrp id in a global variable. 

signum is an integer that specifies the signal to be sent. 
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9.1.5 Miscellaneous Support Routines 

This section describes miscellaneous kernel support routines. 

panicO, printfO, putcharO, getcharO, suserO 

Syntax: panic (s) 
char * s; 

Description: The panic routine takes a parameter s that points to a 
string and prints the string on the system console and 
halts the system. It is called whenever an unrecover­
able kernel error is encountered. This routine should 
be called only under extreme circumstances. 

Parameters: The variable s is an address of a string that describes 
the reason for the system failure. 

Example: panic("the cpu has melted down"); 

Syntax: printf (format, pI, p2, ... ) 
char * format; 

Description: The kernel printf routine prints error messages and 
debugging information on the system console. It is a 
simplified version of the standard C library printf 
routine. The special format characters understood by 
the kernel printfO are %s, %c, %d, %ld, %lx, %u, 
%D, %X, %x, and %0, as well as the NEWLINE (\n) 
and RETURN (\r) characters. 

Parameters: The printfO format string is similar to the format 
parameter used by printf(S), it is used to describe the 
additional parameters to be printed by the routine are 
pJ,p2, .... 

Notes: This routine is not interrupt-driven and will therefore 
suspend all other system activities while it is execut­
ing. 

This routine is similar to standard C library function 
printfO, except that only the formats specified here 
are valid, and precision is not supported. 
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Example: It is often useful to use printfO for driver debu; state­
ments. For example in your xxioctl routine yeu might 
do this: 

xxioctl(dev, cmd, arg) 
int dev, cmd; 
faddr_t arg; 
{ 
printf ("dev == %d, cmd == %d, addr of arg == %xO, dev, cmd, arg); 
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Syntax: putchar (c) 
char c; 

Description: The putchar routine is used by the printfO and 
panicO functions. This routine puts one character on 
the console, doing a "busy wait" rather than depend­
ing on interrupts. 

Parameters: c. is the character that is printed on the console. 

Syntax: int 
getchar 0 

Description: getcharO Can be used to temporarily halt execution 
of the kernel, and get input from a user. 

Return: 

Example: 

getcharO returns the character typed at the keyboard. 

debug = getcharO; 
debug -= '0'; 
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Syntax: suser 0 

Description: The suser routine determines whether the user associ­
ated with the currently executing process is the 
super-user. This can be useful, for example, in deter­
mining whether special device operations (such as 
disk formatting) are allowed. 

Return: suser returns 0 if the current user is not the super-user 
and 1 if the user is the super-user. 
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Example Driver Code 

10.1 Introduction 

This chapter provides code fragments from example drivers for line 
printers, tenninals, and hard disk drives. Each segment of code is fol­
lowed by general comments that describe the routines and explain key 
lines in the program. 

Note that these are not complete working drivers and should not be 
expected to be comprehensive. Real working device drivers are long, 
complex programs. These example code fragments are meant to demon­
strate implementations of individual items within a working driver. For 
convenience, these code fragments are identified and referred to by line 
numbers. 

Note also that the device drivers distributed in the lusrlsyslio directory 
may differ in design from those described in this document. When writing 
device drivers for the target system, you should follow these guidelines 
rather than the examples given in lusrlsyslio. 

10.2 Code Fragments from a Line Printer Driver 

The examples presented here are part of a driver providing a single, paral­
lel interface to a printer. It transfers characters, one at a time, buffering 
the output from the user process through the use of character blocks 
(cblocks). 

1 /* 
2 ** lp- prototype line printer driver 
3 */ 
4 #include " .. /h/param.h" 
5 #include " .. /h/dir .h" 
6 #include " .. /h/a. out. h" 
7 #include " .. /h/user .h" 
8 #include " .. /h/file.h" 
9 #include " .. /h/tty .h" 

10 #include " .. /h/conf.h" 
11 
12 
13 #define LPPRI 
14 #define LOWAT 
15 #define HIWAT 
16 

PZERO+5 
50 
150 

17 /* register definitions */ 
18 
19 
20 
21 
22 
23 

#define REASE 
#define RDATA 
#define RSTATUS 
#define RCNTRL 

OxOO 
(RR.i\SE + 0) 

(REASE + 1) 
(REASE + 2) 

/* base address of registers */ 
/* place character here */ 
/* non zero me~~s busy */ 
/* write control here */ 
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24 /* control definitions */ 
25 #define CINIT OxOl /* initialize the interface */ 
26 #define CIENABL Ox02 /* +Interrupt enable */ 
27 
28 /* flags definitions */ 
29 #define FIRST OxOl 
30 #define ASLEEP Ox02 
31 #define ACTIVE Ox04 
32 
33 struct clist Ip_queue; 
34 int Ip_flags = 0; 
35 
36 int lpopen(), Ipclose(), Ipwrite(), lpintr(); 
37 
38 }; 

The code is defined as follows: 
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Line no. Definition 

13: LPPRI is the priority at which a process sleeps when it 
needs to stop. Since the priority is greater than PZERO, a 
signal sent to the suspended process will awaken it. 

14: LOWAT is the minimum number of characters in the buffer. 
If there are fewer than LOW AT characters in the buffer, a 
process that was suspended (because the buffer was full) can 
be restarted. 

15: HIWAT is the maximum number of characters in the queue. 
If a process fills the buffer up to this point, it will be 
suspended by means of sleep until the buffer has drained 
below LOWAT. 

19-22: The device registers in this interface occupy a contiguous 
block of address, starting at RBASE, and running through 
RBASE+2. The data to be printed is placed in RDATA, one 
character at a time. Printer status can be read from 
RSTATUS, and the interface can be configured by writing 
into RCNTRL. 

29-31: The flags defined in these lines are kept in the IpJlags vari­
able. FIRST is set if the interface has been initialized. 
ASLEEP is set if a process is asleep, waiting for the buffer 
to drain below LOWAT. ACTIVE is set if the printer is 
active. 

33: lp queue is the head of the linked list of cblocks that forms 
the output buffer. 
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34: Ip Jags is the variable in which the aforementioned flags 
are kept. 

lpopen: Lines ,56 to 65 

The lpopen routine is called when some process makes an open system 
calion the special file that represents this driver. Its single argument, 
dev, represents the minor number of the device. Since this driver supports 
only one device, the minor number is ignored. 

56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

lpopen(dev) 
int dev; 
{ 

if (lp flags & FIRST) = = 0 ) { 
lp flags I = FIRST; 
outb(RCNTRL, CRESET); 

outb(RCNTRL, CIENABL); 

The code is defined as follows: 

Line no. Definition 

60-62: If this is the first time (since XENIX was booted) that 
the device has been touched, the interface is initial­
ized by setting the CRESET bit in the control register. 

64: Interrupts from this device are enabled by setting the 
IENABL bit in the control register. 

lpclose: Lines 66 to 70 

The lpclose routine is called on the last close of the device; that is, when 
the current close system call results in zero processes referencing the dev­
ice. No action is taken. 

66 
67 lpclose (dev) 
68 int dev; 
69 { 
70 } 
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lpwrite: Lines 71 to 90 

The lpwrite routine is called to move the data from the user process to 
the output buffer. 

71 lpwrite (dev) 
72 int dev; 
73 
74 register int C; 
75 int X; 
76 
77 while ( (c = cpass () >= 0 ) { 
78 X = splcli(); 
79 while ( Ip_queue.c_cc > HIWAT ) { 
80 lpstart(); 
81 lpflags 1= ASLEEP; 
82 sleep (&lp_queue, LPPRI) i 

83 
84 splx (x) ; 
85 putc(c, &lp_queue); 
86 
87 x = splcli() i 

88 lpstart(); 
89 splx(x); 
90 

The code is defined as follows: 

Line no. 

77: 

78-85: 

87-88: 
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Definition 

While there are still characters to be transferred, do 
what follows. 

Raise the processor priority so the interrupt routine 
cannot change the buffer. If the buffer is full, make 
sure the printer is running, note that the process is 
waiting, and put it to sleep. When the process wakes 
up, check to make sure the buffer has enough space, 
then go back to the old priority and put the character 
in the buffer. 

Make sure the printer is running by locking out inter­
rupts and calling lpstart. 



Example Driver Code 

lpstart: Lines 91 to 98 

The lpstart routine ensures that the printer is running. It is called twice 
from lpwrite and serves simply to avoid duplicate code. 

91 
92 lpstart 
93 { 
94 if ( lp flags & ACTIVE ) 
95 return; /* interrupt chain is keeping printer going * / 
96 lp_flags 1= ACTIVE; 
97 lpintr(O); 
98 

The code is defined as follows: 

Line no. 

94-97: 

Definition 

If the printer is running, just return; otherwise, set 
ACTIVE, and call lpintr to start the transfer of char­
acters. 

Ipintr: Lines 99 to 122 

The lpintr routine is called from two places: lpstart, and from the kernel 
interrupt-handling sequence when a device interrupt occurs. 

99 
100 
101 lpintr (vee) 
102 int vec; 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 

int tnp; 

if ( (lp_flags & ACTIVE) = = 0 ) 
return; /* ignore spurious interrupt */ 

/* pass chars until busy */ 
while ( inb(RSTATUS) = = 0 && (tmp = getc(&lp_queue)) >= 0) 

outb (RDATA, tnp); 

/* wakeup the writer if necessary */ 
if ( lp_queue.c_ce < LOWAT && lp_flags & ASLEEP ) { 

lp _flags &= -ASLEEP; 
wakeup (&lp _queue) ; 
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118 
119 
120 
121 
122 

/* wakeup writer if waiting for drain */ 
if ( lp_queue.c_cc <= 0 ) 

lp_flags &= -ACTIVE; 

The code is defined as follows: 

Line no. Definition 

106-107: If Ipintr is called unexpectedly, or the driver does not 
have anything to do, it just returns. 

110-111: While the printer indicates it can take more characters 
and the driver has characters to give it, the characters 
come from the buffer through getc and pass to the inter­
face by writing to the data register. 

114-116: If the buffer has fewer than LOWAT characters in it and 
some process is asleep waiting for room, wake it up. 

120-121: If the queue is empty, tum off the ACTIVE flag. Note 
that the interrupt that completes the transfer and empties 
the buffer is in some sense "spurious," since it will occur 
with the ACTIVE flag reset. 

10.3 Terminal Driver Code Examples 

The following examples are from a driver that supports one serial tenni­
nal on a hypothetical UART-type interface. Note that this is not the entire 
driver and that the situation is hypothetical. 

1 /* 
2 ** td- terminal device driver 
3 */ 
4 #include " .. /h/param.h" 
5 #include " .. /h/dir .h" 
6 #include " .. /h/user .h" 
7 #include " .. /h/file.h" 
8 #include " .. /h/tty .h" 
9 #include " . . /h/conf.h" 

10 
11 
12 /* registers */ 
13 #define RRDATA 
14 #define RTDATA 
15 #define RSTATUS 
16 #define RCNTRL 
17 #define RIENABL 
18 #define RSPEED 
19 #define RIIR 
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OxOl /* received data */ 
Ox02 /* transmitted data * / 
Ox03 /* status */ 
Ox04 /* control */ 
Ox05 /* interrupt enable */ 

Ox06 /* data rate */ 
Ox07 /* interrupt identification */ 



20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 

/* status register bits 
#define SRRDY 
#define STRDY 
#define SOERR 
#define SPERR 
#define SFERR 
#define SDSR Ox20 
#define SCTS Ox40 

/* control register */ 
#define CBITS5 
#define CBITS6 
#define CBITS7 
#define CBITS8 
#define CDTR Ox04 
#define CRTS Ox08 
#define CSTOP2 
#define CPARITY 
#define CEVEN 
#define CBREAK 

/* interrupt enable */ 
#define EXMIT 
#define ERECV 
#define EMS Ox04 

/* interrupt ident */ 
#define lRECV 
#define IXMIT 
#define IMS 

#define NTDEVS 
#define VECTO 
#define VECT1 

Example Driver Code 

*/ 
Ox01 /* received data ready */ 
Ox02 /* transmitter ready */ 
Ox04 /* received data overrun */ 
Ox08 /* received data parity error */ 
Ox10 /* received data framing error */ 
/* status of dsr (cd)*/ 
/* status of clear to send */ 

OxOO /* five bit chars */ 
Ox01 /* six bit chars */ 
Ox02 /* seven bit chars */ 
Ox03 /* eight bit chars */ 
/* data terminal ready */ 
/* request to send */ 
Ox10 /* two stop bits */ 
Ox20 /* parity on */ 
Ox40 /* even parity otherwise odd */ 
Ox80 /* set xmitter to space */ 

Ox01 /* transmitter ready */ 
Ox02 /* receiver ready */ 
/* modem status change */ 

Ox01 
Ox02 
Ox04 

2 
3 
5 

The code is defined as follows: 

Line no. 

13-19: 

Definition 

The interface for each line consists of seven registers. 
The values that would be defined here represent 
offsets from the base address, which is defined in line 
101. The base address differs for each line. The data 
to be transmitted is placed one character at a time into 
the RTDATA register. Likewise, the received data is 
read one character at a time from the RRDATA regis­
ter. You can determine the status of the DART by 
examining the contents of the RSTATUS register. 
Then you can adjust the DART configuration by 
changing the contents of the RCNTRL register. 
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31-40: 

43-45: 

48-50: 

Interrupts are enabled or disabled by setting the bits 
in the RIENABL register. The data rate is set by 
changing the contents of the RSPEED register. Inter­
rupts are identified by setting the bits in the RllR 
register. 

The two low-order bits of the control register deter­
mine the length of the character sent. The next two 
bits control the data-terminal-ready and request-to­
send lines of the interface. The next bit controls the 
number of stop bits, the next controls whether parity 
is generated, and the next controls whether generated 
parity is even or odd. Finally, the most significant bit, 
if it is set, forces the transmitter to continuous spac­
ing. 

The three low-order bits of the interrupt enable regis­
ter control whether the device generates interrupts 
under certain conditions. If bit 0 is set, an interrupt is 
generated every time the transmitter becomes ready 
for another character. If bit 1 is set, an interrupt is 
generated every time a character is received. If bit 2 
is set, an interrupt is generated every time the data­
set-ready line changes state. 

After an interrupt, the value in the interrupt­
identification register will contain one of three values, 
indicating the reason for the interrupt. 

td_speedr: Lines 55 to 80 

The array of integers, td speeds, defines the data rates available to the 
device. -

55 int tdopen(), tdclose(), tdread(), tdwrite(), tdioctl(), 

56 
57 
58 

tdintr() ; 

59 /* data rates */ 
60 int td speeds [] = 

61 7* BO */ 0, 
62 /* B50 * / 2304, 
63 /* B75 */ 1536, 
64 /* BllO */ 1047, 
65 /* B134 */ 857, 
66 /* B150 */ 768, 
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67 /* B200 */ 0, 
68 /* B300 */ 384, 
69 /* B600 */ 192, 
70 /* B1200 */ 96, 
71 /* B1800 */ 64, 
72 /* B2400 */ 48, 
73 /* B4800 */ 24, 
74 /* B9600 */ 12, 
75 /* EXTA */ 6, /* 19.2k bps */ 
76 /* EXTB */ 58 /* 2000 bps */ 
77 } ; 
78 
79 struct tty td_tty[NTDEVSJ; 
80 int td_addr[NTDEVS] = { OxOO, Ox10 }; 

The code is defined as follows: 

Line no. Definition 

59-77: These lines define the values to be loaded into the 
RSPEED register in order to get various data rates. 

79: Each line must have a tty structure allocated for it. 

80: Here, the base addresses of the registers are defined 
for each line. 

tdopen: Lines 102 to 144 

The tdopen routine is called whenever a process makes an open system 
call on the special file corresponding to this driver. 

102 
103 
104 tdopen(dev, flag) 
105 int dev, flag; 
106 { 
107 register struct tty *tp; 
108 int addr; 
109 tdproc; 
110 int x; 
111 
112 if ( UNMODEM (dev) >= NTDEVS ) { 
113 seterror(ENXIO); 
114 return; 
115 } 
116 tp = &td_tty[UNMODEM(dev)]; 
117 addr = td addr[UNMODEM(dev)]; 
118 if( (tp->t_lflag & XCLUDE) && !suser ) { 
119 seterror(EBUSY); 
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120 return; 
121 
122 if ({tp->t state& (ISOPENIWOPEN» = = 0) 
123 ttinlt (tp) ; 
124 tp->t~roc = tdproc; 
125 tp->t of lag = OPOSTIONLCR; 
126 tp->t~iflag = ICNTRLIISTRIPIIXQN; 
127 tp->t=lflag = ECHO I lCANONI ISIGIECHOE I ECHOK; 
128 tdpararn{dev) ; 
129 
130 x = splcli{); 
131 if ( ISMODEM{dev) II 
132 tp->t_cflag & CLOCAL II 
133 tdmodem (dev, TURNON» 
134 tp->t_state 1= CARR_ON; 
135 else 
136 tp->t_state &= -CARR_ON; 
137 if (! (flag&FNDELAY» 
138 while ({tp->t state&CARR ON) = =0) 
139 tp->t state 1= WOPEN; 
140 sleep({caddr_t)&tp->t_canq, TTIPRI); 
141 } 
142 (*linesw[tp->t_Iine] .l_open) (tp); 
143 splx{x); 
144 

The code is defined as follows: 

Line no. 

112-114: 

118-120: 

122-128: 

130: 

131-136: 

10-10 

Definition 

If the minor number indicates a device that does not 
exist, indicate the error and return. 

If the line is already open for exclusive use, and the 
current user is not the superuser, indicate the error and 
return. 

If the line is not already open, initialize the tty struc­
ture by means of a call to ttinit, set the value of the 
proc field in the tty structure, initialize the input and 
output mode flags, and configure the line by calling 
tdparam. Note that the flags are initialized so that 
the terminal will behave in a reasonable manner if 
used as the console in single-user mode. 

Defer interrupts so the interrupt routines cannot 
change the state while it is being examined. 

If the line is not using modem control, or if it is not 
turning on the data-terminal-ready and request-to-



137-140: 

142: 

143: 

Example Driver Code 

send signals (which results in carrier-detect being 
asserted by the remote device), indicate that the car­
rier signal is present on this line. Otherwise, indicate 
that there is no carrier signal. 

If open is supposed to wait for the carrier, wait until 
the carrier is present. 

Call the I_open routine indirectly through the linesw 
table. This completes the work required for the 
current line discipline to open a line. 

Allow further interrupts. 

tdclose: Lines 145 to 157 

The tdclose routine is called on the last close on a line. 

145 
146 tdclose(dev) 
147 { 
148 register struct tty *tPi 
149 
150 tp = &td tty[UNMODEM(dev)]; 
151 (*linesw[tp->t line].l close) (tp)i 
152 if (tp->t_cflag & HOPeL) 
153 tdmodern(dev, TORNOFF); 
154 tp->t lflag &= -XCLUDE; 1* turn off exclusive use bit *1 
155 1* turn off interrupts *1 
156 out (td_addr[UNMODEM(dev)] + RIENABL, 0); 
157 

The code is defined as follows: 

Line no. 

151: 

152-153: 

154: 

156: 

Definition 

Call the close routine through the linesw table to do 
the work required by the current line discipline. 

If the "hang up on last close" bit is set, drop the 
data-terminal-ready and request-to-send signals. 

Reset the exclusive-use bit. 

To prevent spurious interrupts, disable all interrupts 
for this line. 
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tdread and tdwrite: Lines 158 to 168 

The tdread and tdwrite routines call the relevant routine by means of the 
linesw table. The called routine perfonns the appropriate action for the 
current line discipline. 

158 
159 tdread(dev) 
160 { 
161 (*linesw[tp->t_Iine] .I_read) (&td_tty[UNMODEM(dev)]); 
162 
163 
164 tdwrite (dev) 
165 { 
166 
167 (*Iinesw[tp->t_line] . I_write) (&td_tty[UNMODEM(dev)]); 
168 

tdparam: Lines 169 to 205 

The tdparam routine configures the line to the mode specified in the 
appropriate tty structure. 

169 
170 tdparam(dev) 
171 { 
172 register int cflag; 
173 register int addr; 
174 register int temp, speed, X; 
175 
176 addr = td_addr[UNMODEM(dev)]; 
177 cflag = td_tty[UNMODEM(dev)] .t_cflag; 
178 
179 /* if speed is BO, turn line off */ 
180 if ( (cflag & CBAUD) = = BO) { 
181 outb (addr + RCNTRL, inb (addr+RCNTRL) & -CDTR & -CRTS); 
182 return; 
183 
184 
185 /* set up speed */ 
186 outb ( addr + RSPEED, td _speeds [ cflag & CBAUD ]); 
187 
188 /* set up line control */ 
189 temp = (cflag & CSIZE) » 4; /* length */ 
190 if ( cflag & CSTOPB ) 
191 temp 1= CSTOP2; 
192 if ( cflag & PARENS ) { 
193 temp 1= CPARITY; 
194 if ( (cflag & PARODD) = = 0) 
195 temp 1= CEVEN; 
196 
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197 tenp 1= CDTR I CRTSi 
198 out ( addr + RCNTRL, tenp ); 
199 
200 /* setup interrupts */ 
201 tenp = EXMITi 
202 if ( cflag & CREAD ) 
203 temp 1= ERECV; 
204 outb(addr + RENABL, inb(RENABL) I temp)i 
205 

The code is defined as follows: 

Line no. Definition 

176-177: Get the base address and flags for the referenced line. 

180-182: The speed BO means' 'hang up the line." 

186-205: The remainder of the tdparam routine simply loads 
the device registers with the correct values. 

tdmodem: Lines 206 to 224 

The tdmodem routine controls the data-terminal-ready and request-to­
send line signals. Its return value indicates whether data-set-ready signal 
(carrier detect) is present for the line. 

206 
207 tdmodem(dev, cmd) 
208 int dev, cmd; 
209 { 
210 register int addr; 
211 
212 addr = td addr[UNMODEM(dev)]; 
213 switch (cmd) { 
214 case TURNON: /* enable modem interrupts, set DTR & RTS true *, 
215 outb (addr + RENABL, inb (RENABL) I EMS); 
216 outb (addr + RCNTRL, inb (RENABL) I CDTR I CRTS ); 
217 break; 
218 case TURNOFF: /* disable modem interrupts, reset DTR, RTS * / 
219 outb (addr + RENABL, inb (RENABL) & -EMS); 
220 outb (addr + RCNTRL, inb (RENABL) & - (CDTR I CRTS) ); 
221 break; 
222 
223 return (inb (addr + RSTATUS) & SDSR); 
224 
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The code is defined as follows: 

Line no. 

214-217: 

218-221: 

223: 

Definition 

If cmd was TURNON, tum on modem interrupts, and 
assert data-terminal-ready and request-to-send. 

If cmd was TURNOFF, disable modem interrupts, 
then drop data-terminal-ready and request-to-send. 

Return a zero value if there is no data-set-ready on 
this line; otherwise return a nonzero value. 

tdintr: Lines 225 to 251 

The tdintr routine determines which line caused the interrupt and the rea­
son for the interrupt, and calls the appropriate routine to handle the inter­
rupt. 

225 #endif 
226 
227 tdintr (vee) 
228 int vee; 
229 { 
230 register int iir, dev, inter; 
231 
232 switeh( vee) { 
233 ease VECTO: 
234 dev = 0; 
235 break; 
236 ease VECTl: 
237 dev = 1; 
238 break; 
239 default: 
240 printf("tdint: wrong level interrupt (%x) \n",vee) 
241 return; 
242 } 
243 while ( (iir = inb(td addr[dev]+RIIR» != 0) { 
244 if( (iir & IxMIT) != 0 ) 
245 tdxint(dev); 
246 if( (iir & lRECV) != 0 
247 tdrint(dev); 
248 if ( (iir & IMS) != 0 
249 tdmint(dev); 
250 
251 
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The code is defined as follows: 

Line no. Definition 

232-242: Different lines will result in different interrupt vectors 
being passed as the tdintr routine's argument. Here, 
the minor number is determined from the interrupt 
vector that was passed to tdintr. 

243-251: While the interrupt-identi fication register indicates 
that there are more interrupts, call the appropriate 
routine. When the condition that caused the interrupt 
is resolved, the DART will reset the bit in the register 
by itself. 

tdxint: Lines 252 to 272 

The tdxint routine is called when a transmitter ready interrupt is 
received. It may issue a eSTOP character to indicate that the device on 
the other end must stop sending characters. It may issue a eSTART char­
acter to indicate that the device on the other end may resume sending 
characters, or it may call tdproc to send the next character in the queue. 

252 
253 tdxint(dev) 
254 { 
255 register struct tty *tp; 
256 register int addr; 
257 
258 tp = &td_tty[UNMODEM(dev)]; 
259 addr = td addr[UNMODEM(dev)]; 
260 if ( in'\:) (addr + RS'ffiTUS) & STRDY ) 
261 { 
262 tp->t_state &= -BUSY; 
263 if (tp->t_state & TTXON) 
264 outb (addr + R'IDATA., eSTART); 
265 tp->t state &= -TTXON; 
266 else if (tp->t_state & TTXOFF) { 
267 outb(addr + R'IDATA., eSTOP); 
268 tp->t_state &= -TTXOFF; 
269 else 
270 tdproc (tp, T_OUTPUT); 
271 
272 
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The code is defined as follows: 

Line no. 

260: 

263-265: 

266-268: 

269-270: 

Definition 

If the transmitter is ready, reset the busy indicator. 

If the line is to be restarted, send a eSTART, and reset 
the indicator. 

If the line is to be stopped, send a eSTOP, and reset 
the character. 

Otherwise, call tdproc and ask it to send the next 
character in the queue. 

tdrint: Lines 273 to 338 

The tdrint routine is called when a receiver interrupt is received. All it 
has to do is pass the character, along with any errors, to the appropriate 
routine by means of the linesw table. 

273 
274 
275 
276 
277 
278 
279 
280 
281 
282 
283 
284 
285 
286 
287 
288 
289 
290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 

10-16 

tdrint (dev) 
{ 

register int c, status; 
register int addr; 
register struct tty *tp; 

tp = &td tty[UNMODEM(dev)); 
addr = td_addr[UNMODEM(dev)); 

/* get char and status */ 
c = inb ( addr + RRDKrn. ); 
status = inb(addr + RLSR); 

/* 
* Were there any errors on input? 
*/ 

if( status & SOERR ) 
c 1 = OVERRUN; 

if( status & SPERR ) 
c 1= PERROR; 

if( status & SFERR ) 
c 1 = FRERROR; 

if (tp->t_rbuf .cytr = NULL) 
return; 

flg = tp->t iflag; 
if (flg&IXON) { 

/* overrun error */ 

/* parity error */ 

/* framing error */ 
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301 register int ctmp; 
302 ctmp = c & 0177; 
303 if( tp->t state & TTSTOP ) { 
304 if (ctmp = eSTART II flg&IXANY) 
305 (*tp->t-proc) (tp, T_RESUME); 
306 else { 
307 if (ctmp = eSTOP) 
308 (*tp->t-proc) (tp~ T_SUSPEND); 
309 
310 if (ctmp = eSTIffiT I I ctmp = eSTOP) 
311 return; 
312 
313 if (c&PERROR && ! (flg&INPCK) ) 
314 c &= -PERROR; 
315 if (c&(FRERRORIPERRORIOVERRUN)) 
316 if ((c&0377) = 0) { 
317 if (flg&IGNBRK) 
318 return; 
319 if (flg&BRKINT) 
320 (*linesw[tp->t_line] . i_input) 
321 (tp, L_BREAK); 
322 return; 
323 
324 else { 
325 if (flg&IGNPAR) 
326 return; 
327 
328 else { 
329 if (flg&ISTRIP) 
330 c &= 0177; 
331 else { 
332 c &= 0377; 
333 
334 
335 *tp->t_rbuf.c-ptr = c; 
336 tp->t rbuf.c count--; 
337 (*linesw[tp->t_line].l_input) (tp, L_BUF); 
338 

The code is defined as follows: 

Line no. Definition 

283-285: Get the character and status. 

290-295: If any errors were detected, set the appropriate bit in 
c. 

300-312: This code determines whether the character is X-ON 
and, if output is stopped, it restarts it. If the character 
is X-OFF, output is suspended. 
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313-334: 

335-336: 

337: 

Further error checking is then carried out and charac­
ters in error are discarded. The character is then 
placed in the queue. 

This code stores the character into the received buffer 
and decrements the character count. 

Finally, character and errors are passed to the IJnput 
routine for the current line discipline. 

tdmint: Lines 339 to 366 

The tdmint routine is called whenever a modem interrupt is caught. 

339 
340 tdmint(dev) 
341 { 
342 register struct tty *tp; 
343 register int addr,c; 
344 
345 tp = &td tty(UNMODEM(dev)]; 
346 if ( tp->t_cflag & CLOCAL ) 
347 return; 
348 } 
349 addr = td_ addr (UNMODEM (dev) ] ; 
350 
351 if (inb (addr + RSTATUS) & SDSR) { 
352 if ((tp->t_state & CARR_ON)= =0) 
353 tp->t_state 1= ~ON; 
354 wakeup(&tp->t_canq); 
355 
356 else { 
357 if (tp->t_state & ~ON) 
358 if (tp->t_state & ISOPEN) { 
359 signal(tp->t~rp, SIGHUP); 
360 tclrnodem(dev, TURNOFF); 
361 ttyflush(tp, (FREADIFWRITE»; 
362 
363 tp->t_state &= -CARR_ON; 
364 
365 
366 

The code is defined as follows: 

Line no. Definition 

346-347: If there is no modem support for this line, just return. 
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351-354: If a data-set-ready is present for this line, and it did 
not exist before, mark the line as having a carrier, and 
wake up any processes that are waiting for the carrier 
before their tdopen call can be completed. 

356-365: If no data-set-ready is present for this line, and one 
existed before, send a hangup signal to all of the 
processes associated with this line, call tdmodem to 
hang up the line, flush the output queue for this line 
by calling ttyflush, and mark the line as having no 
carrier. 

tdioctl: Lines 367 to 376 

The tdioctl routine is called when some process makes an ioctl system 
call on a device associated with the driver. It just calls ttiocom, which 
returns a nonzero value if the hardware must be reconfigured. 

367 
368 tdioctl (dev, cm.d, arg, mode) 
369 int dev; 
370 int cmd; 
371 faddr_t argi 
372 int mode; 
373 { 
374 if (ttiocom(&td_tty[UNMODEM(dev)], cmd, arg, mode)) 
375 tdparam(dev); 
376 

tdproc: Lines 377 to 454 

The tdproc routine is called to effect some change on the output, such as 
emitting the next character in the queue, or halting or restarting the out­
put. 

377 
378 tdproc (tp, cmd) 
379 register struct tty *tp; 
380 { 
381 register c; 
382 register int addri 
383 
384 extern ttrstrti 
385 
386 addr = td addr [tp - td tty] i 
387 switch (cmd) { -
388 
389 case T TIME: 
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390 
391 
392 
393 
394 
395 
396 
397 
398 
399 
400 
401 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 
418 
419 
420 
421 
422 
423 
424 
425 
426 
427 
428 
429 
430 
431 
432 
433 
434 
435 
436 
437 
438 
439 
440 
441 
442 
443 
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tp->t state &= -TIMEOUT; 
outb (addr + RCNTRL, inb (addr + RCNTRL) & -CBREAK); 
goto start; 

case T WFLUSH: 
tp->t tbuf.c size -= tp->t tbuf.c count; 
tp->(~tbuf .c:=count = 0; - -

case T RESUME: 
tp->t_state &= -TTSTOP; 
goto start; 

case T OUTPUT: 
start: 

if (tp->t_state&(TIMEOUTITTSTOPIBUSY» 
breaki 

break; 

register struct ccblock *tbuf; 

tbuf = &tp->t _ tbuf; 
if ( tbuf->c_ptr = NULL II 

tbuf->c count = 0 ) { 
if ( tbuf->c-ptr ) 

tbuf->c-ptr -= tbuf->c size 
- tbuf->c_count; 

if ! (CPRES & 
(*linesw[tp->t_line].l output) (tp») 

break; 

tp->t state 1= BUSY; 
outb(addr + RTHR, *tbuf->c-ptr++}; 
tbuf->c _count --; 

case T SUSPEND: 
tp->t state 1= TTSTOP; 
break; 

case T BLOCK: 
tp->t_state &= -TTXON; 
tp->t state 1= TBLOCK; 
if (tp->t_state&BUSY) 

tp->t_state 1= TTXOFFi 
else 

outb (addr + RTDATA, eSTOP); 
break; 

case T RFLUSH: 
if (! (tp->t_state&TBLOCK)) 

break; 
case T UNBLOCK: 

tp->t state &= -(TTXOFFITBLOCK); 
if (tp->t_state&BUSY) 

tp->t_state 1= TTXONi 



444 
445 
446 
447 
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else 
outb (addr + RTDATA, CSTART); 

break; 

448 case T BREAK: 
449 outb ( addr + RCNTRL, inb ( addr + RCNTRL) 1 CBREAK ); 
450 tp->t state 1= TIMEOUT; 
451 timeout(ttrstrt, tp, Hz/4); 
452 break; 
453 
454 

The code is defined as follows: 

Line no. 

387: 

389-392: 

398-399: 

403-404: 

405-420: 

Definition 

The cmd argument detennines the action taken. 

The time delay for outputting a break has finished. 
Reset the flag TIMEOUT, which indicates there is a 
delay in progress and stop sending a continuous 
space. Then, restart output by jumping to start. A 
WFLUSH command resets the character-buffer 
pointers and the count. 

Either a line on which output was stopped is restart­
ing, or someone is waiting for the output queue to 
drain. Reset the flag TTSTOP, indicating that output 
on this line is stopped, and start the output again by 
jumping to start (line 402). 

Try to output another character. If some delay is in 
progress (TIMEOUT), or the line output has stopped 
(TTSTOP), or a character is in the process of being 
output (BUSY), just return. 

This code manipulates the character queue in order to 
output either a block of characters (by calling the 
I_output routine) or perfonn a single-character­
output operation (in this example, the outb routine). 

Note that if the device is capable of outputting more 
than one character in a single operation, then this 
should be done, and the buffer pointer (cjltr) and the 
count (c_count) should be adjusted appropriately. 
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424-426: 

428-435: 

437-439: 

Line no. 

440-446: 

448-452: 

To stop the output on this line, since there is no way 
to stop the character we have already passed to the 
controller, just flag the line stopped, and drop through. 

To tell the device on the other end to stop sending 
characters, reset the flag asking to stop the line, and 
mark the line stopped. If the line is already busy, set 
the flag; otherwise, output a eSTOP character. 

A process is waiting to flush the input queue. If the 
device hasn't been blocked, just return. Otherwise, 
drop through and unblock the device. 

Definition 

To tell the device on the other end to resume sending 
characters, adjust the flags. If the controller is send­
ing a character, set the flag to send a eSTART later; 
otherwise, send the eSTART now. 

To send a break, set the transmitter to continuous 
space, mark the line as waiting for a delay, and 
schedule output to be restarted later. 

10.4 Disk Drive Code Examples 

The code examples presented here are for an intelligent controller that is 
attached to one or more disk drives. The controller can handle multiple 
sector transfers that cross track and cylinder boundaries. 

1 /* 
2 ** hd- prototype hard disk driver 
3 */ 
4 
5 #include " .. /h/param.h" 
6 #include" .. /h/buf . hI! 
7 #include " .. /h/iobuf.h" 
8 #include " .. /h/dir.h" 
9 #include " .. /h/conf.h" 

10 #include " .. /h/user.h" 
11 
12 
13 /* disk parameters */ 
14 #define NHD 4 /* number of drives */ 
14a #define NPARTS 8 /* # partitions/disk */ 
15 #define NCPD 600 /* # cylinders/disk * / 
16 #define NTPC 4 /* # tracks/cylinder * / 
17 #define NSPT 10 /* # sectors/track * / 
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19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
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#define NBPS 512 /* # bytes/sector * / 
#define NSPB (BSIZE/NBPS) /* sectors/block * / 
#define NBPC (NTPC*NSPT/NSPB) /* blocks/cylinder */ 

/* addresses of controller registers */ 
#define RBASE OxOO /* base of all registers */ 
#define RCMD (RBASE+O) /* cormnand register * / 
#define RS~ (RBASE+1) /* status - nonzero means error */ 
#define RCYL (RBASE+2) /* target cylinder */ 
#define RTRK (RBASE+3) /* target track */ 
#define RSEC (RBASE+4) /* target sector */ 
#define RADDRL (RBASE+5) /* target memory address 10 16 bits*/ 
#define RADDRH (RBASE+6) /* target memory address hi 8 bits*/ 
#define RCNT (RBASE+7) /* number of sectors to xfer */ 

/* bits in RCMD register */ 
#define CREAD Ox01 
#define CWRITE Ox02 
#define CRESET Ox03 

/* 

/* start a read */ 
/* start a write */ 
/* reset the controller */ 

** minor number layout is OOOOdppp 
** where d is the drive number and ppp is the partition 
*/ 
#define drive(d) 
#define part (d) 

( minor (d) » 3) 
(minor(d) & Ox07) 

/* partition table */ 
struct partab { 

daddr t len; /* # of blocks in partition * / 
int - cyloff; /* starting cylinder of partition */ 

}; 

The code is defined as follows: 

Line no. 

14: 

14a: 

15-20: 

23-31: 

Definition 

NHD defines the number of drives to which the con­
troller can be attached. 

NPARTS defines the number of partitions that can be 
configured on a single drive. 

Each disk drive attached to the controller has NCPD 
cylinders; each cylinder has NTPC tracks; and each 
track has NSPT sectors. The sectors are NBPS bytes 
long and each cylinder has NBPC blocks. 

The controller registers occupy a region of contiguous 
address space starting at RBASE and running through 
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34-36: 

42-43: 

46-50: 

RBASE+ 7. To make the controller perform some 
action, the registers that describe the transfer (RCYL, 
RTRK, RSEC, RADDRL, RADDRH, RCNT) are set 
to the appropriate values. 

The bit representing the desired action is written into 
the RCMD register. 

The drive and part macros split out the two parts of 
the minor number. Bits 0 through 2 represent the par­
tition on the disk, and the remaining bits specify the 
drive number. Thus, the minor number for drive 1, 
partition 2 would be 10 decimal. 

Large disks typically are broken into several parti­
tions of a more manageable size. The structure that 
specifies the size of the partitions specifies the length 
of the partition in blocks, and the location of the start­
ing cylinder of the partition. 

hd_sizes: Lines 51 to 74 

The following source code defines the partitions used for the device 
driver. The partition divides the disk into four separate areas. 

51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
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int hdread(), hdwrite(), hdintr(), hdstrategy(); 

struct partab hd sizes [8] = 

NCPD*NBPC, - 0, 
ROOTSZ*NBPC, 0, 
SWAPSZ*NBPC, ROOTSZ, 
USERSZ*NBPC, USROFS, 
0, 0, 
0, 0, 
0, 0, 
0, 0, 

}; 

struct iobuf hdtab; 
struct buf rhdbuf; 
/* 
** Strategy Routine: 

Arguments: 

/* whole disk */ 
/* root area */ 
/* swap area */ 
/* usr area */ 
/* spare */ 
/* spare */ 
/* spare */ 
/* spare */ 

/* start of request queue */ 
/* header for raw i/o */ 

** 
** 
** 
** 
** 
** 

Pointer to buffer structure 

*/ 

Function: 
Check validity of request 
Queue the request 
Start up the device if idle 



Example Driver Code 

The code is defined as follows: 

Line no. Definition 

54-57: This driver splits a disk into up to eight partitions, but 
at present only four are used. The first partition cov­
ers the whole disk. The remaining three split the disk 
three ways, one partition for each of root, swap, and 
usr areas. 

64: The buffer headers representing requests for this 
driver are linked into a queue, with hdtab forming the 
head of the queue. In addition, information regarding 
the state of the driver is kept in hdtab. 

65: Each block driver that wants to allow raw I/O allo­
cates one buffer header for this purpose. 

hdstrategy: Lines 102 to 131 

The hdstrategy routine is called by the kernel to queue a request for I/O. 
The single argument is a pointer to the buffer header which contains all of 
the data relevant to the request. The strategy routine is responsible for 
validating the request, and linking it into the queue of outstanding 
requests. 

102 int hdstrategy(bp) 
103 register struct buf *bp; 
104 { 
105 register int dr, pa; /* drive and partition numbers */ 
106 daddr_t sz, bn; 
107 int X; 
108 dr = drive(bp->b_dev); 
109 pa = part(bp->b_dev); 
110 bn = bp->b_blkno * NSPB; 
111 sz = (bp -> b bcount + BMASK) »BSHIFT; 
112 if ( dr<NHD && pa<NPARTS && bn>=O && bn<hd sizes[pa].len && 
113 ((bn + sz < hd_ sizes [pa] . len) [[ (bp->b _flags & B _ READ) ) ) 
114 
115 if (bn + sz > hd sizes[pa].len) { 
116 sz = (hd_sizes[pa] . len - bn) * NBPS; 
117 bp->b resid = bp->b bcount - (unsigned) sz; 
118 bp->~bcount = (unsIgned) sz; 
119 
120 else 
121 bp->b flags [= B_ERROR; 
122 iodone(bp); 
123 return; 
124 

10-25 



Device Driver Writer's Guide 

125 bp->b_cylin = (b_blkno / NBPe) + hd_sizes[pa] .cyloff; 
126 x = splbuf(); 
127 disksort (&hdtab, bp) 
128 if (bp->b_active = = NULL) 
129 hdstart(); 
130 splx(x); 
131 

The code is defined as follows: 

Line no. 

108-111: 

112-124: 

125: 

126: 

127: 

128: 

129: 

Definition 

First, compute various useful numbers that will be 
used repeatedly during the validation process. 

If the request is for a nonexistent drive or a nonex­
istent partition, if it lies completely outside the 
specified partition, or is a write, and ends outside the 
partition, the B_ERROR bit in the b Jags field of the 
header is set to indicate that the request has failed. 
The request is then marked "complete." This is done 
by calling iodone with the pointer to the header as an 
argument. If the request is a read, and ends outside 
the partition, it is truncated to lie completely within 
the partition. 

Compute the target cylinder of the request for the 
benefit of the disk sort routine. 

Block interrupts to prevent the interrupt routine from 
changing the queue of outstanding requests. 

Sort the request into the queue by passing it and the 
head of the queue to the disksort routine. 

If the controller is not already active, start it up. 

Re-enable interrupts and return to the user process. 

hdstart: Lines 132 to 166 

The hdstart routine calculates the physical address on the disk, and starts 
the transfer. 

132 
133 /* 
134 * 
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135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 
157 
158 
159 
160 
161 
162 
163 
164 
165 
166 

* 
* 
* 
* 
* 
* 

Example Driver Code 

Arguments: 
None 

Function: 
Compute device-dependent parameters 
Start up device 
Indicate request to I/O monitor routines 

*/ 
hdstart() 
{ 

register struct buf *bp; 
register unsigned sec; 

/* BUFFER POINTER * / 

if ((bp = hdtab.b actf) = = NULL) 
hdtab.b_active = 0; 
return; 

hdtab.b active = 1; 

sec = ((unsigned) bp->blkno * NSPB) ; 
out(RCYL, sec / NSPC); /* cylinder */ 
sec %= NSPC; 
out (RTRK, sec / NSPT) ; / * track * / 
out(RSEC, sec % NSPT); /* sector */ 
out(RCNT, bp->b_count / NBPS); /* count */ 
out (RDRV, drive (bp->b dev)); /* drive */ 
out(RADDRL, bp->byaddr & Oxffff); /* memory address 10 */ 
out (RADDRH, bp->b yaddr » 16); /* memory address hi * / 
if ( bp->b_flags & B_READ ) 

out(RCMD, CREAn); 
else 

out (RCMD, CWRITE); 

The code is defined as follows: 

Line no. 

147-149: 

151: 

153-157: 

159-161: 

162-166: 

Definition 

If there are no active requests, mark the state of the 
driver as idle, and return. 

Mark the state of the driver as active. 

Calculate the starting cylinder, track, and sector of the 
request, and load the controller registers with these 
values. 

Load the controller with the drive number, and the 
memory jddress of the data to be transferred. 

If the request is a read request, issue a read command; 
otherwise, issue a write command. 
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hdintr: Lines 167 to 201 

The hdintr routine is called by the kernel through the vecintsw table 
whenever the controller issues an interrupt. 

167 
168 
169 
170 
171 
172 
173 
174 
175 
176 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 
196 
197 
198 
199 
200 
201 

/* 

* 
* 
* 
* 
* 

Interrupt routine: 
Check completion status 
Indicate completion to i/o monitor routines 
Log errors 
Restart (on error) or start next request 

*/ 
hdintr () 
{ 

register struct buf *bp; 

if (hdtab.b_active = = 0) 
return; 

bp = hdtab.b_actf; 

if (in(RS~) != 0 
out (RCMD, CRESET); 

} 
/* 
* 
*/ 

if (++hdtab.b_errcnt <= ERRLIM) 
hdstart; 
return; 

bp->b_flags 1= B_ERRORi 
deverr(&hdtab, bp, in(RS~), 0); 

Flag current request complete, start next one 

hdtab.b_errcnt = 0; 
hdtab.b actf = bp->av forw; 
bp->b resid = 0; -
iodone (bp) ; 
hdstart(); 

The code is defined as follows: 

Line no. 

179-180: 

182: 
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Definition 

If an unexpected call occurs, just return. 

Get a pointer to the first buffer header in the chain; 
this is the request that is ~urrent1y being serviced. 



184-192: 

196-201: 

Example Driver Code 

If the controller indicates an error, and the operation 
hasn't been retried ERRLIM times, try it again. If it 
has been retried ERRLIM times, assume it is a hard 
error, mark the request as failed, and call deverror to 
print a console message about the failure. 

Mark this request complete, take it out of the request 
queue, and call hdstart to start on the next request. 

hdread: Lines 202 to 222 

The hdread routine is called by the kernel when a process requests raw 
read on the device. All it has to do is call physio, passing the name of the 
strategy routine, a pointer to the raw-buffer header, the device number, 
and a flag indicating a read request. The physio routine does all the prel­
iminary work, and queues the request by calling the device-strategy rou­
tine. 

202 
203 /* 
204 * raw read routine: 
205 * This routine calls "physio" which computes and validates 
206 * a physical address from the current logical address. 

* 
Arguments 

Full device number 
Functions: 

207 
208 
209 
210 
211 
212 
213 
214 
215 
216 

* 
* 
* 
* 
* 
* 

Call physio which does the actual raw (physical) I/O 
The arguments to physio are: 

* 
* 
* 

217 */ 
218 hdread(dev) 
219 { 
220 

pointer to the strategy routine 
buffer for raw I/O 
device 
read/write flag 

221 physio(hdstrategy, & rhdbuf , dev, B_READ); 
222 

hdwrite: Lines 231 to 235 

The hdwrite routine is called by the kernel when a process requests a raw 
write on the device. Its responsibilities and actions are the same as 
hdread, except that it passes a flag indicating a write request. 

223 
224 /* 
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225 
226 
227 
228 
229 
230 
231 
232 
233 
234 
235 

10-30 

* 
* 
* 
* 
* 
*1 

Raw write routine: 
Arguments (to hdwrite) : 

Full device number 
Functions: 

Call physio which does actual raw (physical) rio 

hdwrite (dev) 
{ 

physio(hdstrategy, &rhdbuf, dev, B_WRITE); 
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The Select System Call 

A.I Supporting the Select System Call 

This section describes routines that support the select(S) system call. The 
routines are called: 

selsuccessO, selfailureO, selreadO, selwriteO, selexceptO, 
selwakeupO 

Drivers that are to support the select(S) call must include global declara­
tions like the following: 

#include " .. /h/select.h" 
extern int selwait; 
struct xx selstr 
{ 

struct proc *read; 
struct proc *write; 
struct proc *except; 
char flags; 

xxselstr[NUM_MINOR_DEVS); 

Syntax: selsuccessO; 

Description: A driver uses selsuccess to indicate that the condition 
which the user has selected is true, and the process 
should not block. 

Syntax: 

The select(S) system call code uses a unique ioctl to 
the driver to ask whether or not a condition is satisfied 
for reading, writing, or exceptional circumstances. 
The mode argument to the xxioctl call indicates the 
condition that is being selected, and has three valid 
values: SELREAD, SEL WRITE and SELEXCEPT. 
These are defined in select.h. So all drivers that are to 
support select must implement the IOC_SELECT 
ioctl with code analogous to that displayed in the 
example section for selwakeupO. 

selfailureO; 

Description: A driver uses selfailure to indicate that the condition 
which the user has selected is not true, and the pro­
cess should block. 
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A-2 

Syntax: selwakeup(procp, flags); 
struct proc * procp; 
char flags; 

Description: A driver uses selwakeup to indicate that the condition 
the user selected which was not initially satisfied, is 
now true. The process should now be awakened. 

Parameters: struct proc * procp; 
char flags; 

procp is a pointer to a process table entry which is 
found in the xxselstr data structure. Every time a pro­
cess selects a condition that is not immediately 
satis fied, a pointer to the process is stored in the data 
structure. This pointer is passed to the select system 
call by the selwakeup call. 

flags is a byte used to indicating if multiple processes 
are colliding by selecting the same condition. When­
ever more than one process selects a condition, the 
driver must set the correct collision bit. The three bits 
(defined in select.h) are READ_COLLISION, 
WRITE_COLLISION, and EXCEPT_COLLISION, 
for selecting for reading, writing, and exceptional 
conditions, respectively. 

Examples: In the first example, a process issues the select(S) sys­
tem call (read case only): Note that the examples can 
be replicated identically substituting write and except 
for all occurrences of read. 
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/* 
* This routine from driver xx 
* handles a select for read request. 
* Note all requests come from 
* the select system call individually. 
*/ 

xxioctl(dev, cmd, mode, arg) 
dev_t dev; 
int cmd, mode, arg; 
{ 

if ( cmd == IOC SELECT 
{ 

switch (mode) 
{ 

case SELREAD: 
break; 

/* 

xx_selread(dev); 

* likewise for SELWRITE and SELEXCEPT 
*/ 

/* 

} 
return; 
} 

* Normal ioctl processing 
*/ 

xx_selread(dev) 
dev_t dev; 
{ 

extern void selsuccess(); 
extern void selfailure(); 
struct proc *procp; 
struct xx_selstr *ptr = &xxselstr[dev]; 

if ( xx condition is satisfied for read[dev] 
{- - - --
selsuccess(); 
return; 
} 

/* 
* The condition is unsatisfied so the process will block. 
*/ 

procp = ptr->read; 
if ( procp && procp->p_wchan == (char*) &selwait ) 

ptr->flags 1= READ_COLLISION; 
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else 
ptr->read 

selfailure () ; 
} 

u.u_procp; 

In the next example, the process has selected a condition and is blocked. 
Then, the condition becomes satisfied (read case handled): 

A-4 

xxintr(level) 
{ 

/* 
* Driver first notices that the condition is now 
* satisfied and computes minor dev 
*/ 

xxwakeread(dev); 

xxwakeread(dev) 
dev_t dev; 
{ 

struct xx selstr *ptr &xxselstr[dev]; 

/* 
* If a proc has selected the condition, awaken it. 
*/ 

if ( ptr->read ) 
{ 

selwakeup(ptr->read, ptr->flags & READ_COLLISION); 
ptr->read = (struct proc *) NULL; 
ptr->flags &= -READ_COLLISION; 
} 
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Sharing Interrupt Vectors 

B.1 Sharing Interrupt Vectors 

I/O devices can only share interrupt vectors if there is a way to poll each 
device using the shared vector to determine whether that device has 
posted an interrupt. The configuration utility, config, lets the user specify 
two devices to share an interrupt level. For more information about this 
procedure, see config(ADM) and master(F) in the XENlX Reference 
Manual. 

If there are two devices, aa and bb that share interrupt level 3, the code in 
the c.c file generated by config should be as follows: 

vector3 (level) 
int level; 
{ 

aaintr(level) ; 
bbintr(level); 

int (*vecintsw [l ) () 
{ 

clock, 
consintr, 
novec, 
vector3, 
novec, 
etc 

The interrupt routines aaintr and bbintr should have the following for­
mat: 

xxintr(level) 
int level; 
{ 

IF NOT MY INTERRUPT 
return; 

NORMAL INTERRUPT PROCESSING 

B-1 
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Warnings 

C.I Warnings 

The following warnings can help you avoid problems when writing a dev­
ice driver: 

• Do not defer interrupts with splS () or other spl calls any longer 
than necessary. 

• Do not change the per process data in the u structure at interrupt 
time. 

• Do not call seterror( ) or sleep( ) at interrupt time. 

• Do not set your priority level at interrupt time to a lower priority 
than the one at which your interrupt routine was called. 

• Make interrupt time processing as short as possible. 

• Protect buffer and dist processing with the appropriate spl calls. 

• Avoid "busy waiting" whenever possible. 

• Never use floating point arithmetic operations in device driver 
code. 

• If any assembly language device driver sets the direction flag 
(using std), it must clear it (using cld) before returning. 

• Keep the local (stack) data requirements for your driver very 
small. 
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Timing and synchronization functions 
delay 9-13 
sleep 9-13 
timeout 9-13 
wakeup 9-13 

ttinit 10-10 

u 

u-area 1-7 
User Processes 1-6 

w 
wakeup 3-14 

x 

xxc10se 2-4,3-2 
xxinit 2-4, 3-2 
xxintr 2-5, 3-3, 3-14 
xxioctl 2-7,3-5 
xxopen 2-4, 3-2 
xxproc 3-5 
xxread 2-6, 3-4 
xxstart 2-5, 3-3 
xx strategy 2-5 
xxwrite 2-6, 3-4 
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